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 Educational institutes play a significant role to build up a nation and 

developing society. Education is an important factor that can help a man to 

judge his destiny, and shape the coming future. This article aims to extend 

the concepts of interval-valued T-spherical fuzzy (IVTSF) set (IVTSFS) 

based on Maclaurin symmetric mean (MSM) operators. The main 

concentration of this manuscript is to study the interrelationship among any 

number of IVTSF numbers (IVTSFNs) by the use of Maclaurin symmetric 

mean (MSM) operators. We explore and develop IVTSF Maclaurin 

symmetric mean (IVTSFMSM) operator, IVTSF weighted MSM 

(IVTSFWMSM) operator, IVTSF dual MSM (IVTSFDMSM) operator, 

IVTSF weighted dual MSM (IVTSFWDMSM) operator. By using these 

examined operators, some special cases of the discovered operators are also 

established and their properties are examined. In addition, a procedure for 

handling multi-attribute group decision-making (MAGDM) techniques based 

on MSM operators in the IVTSF setting.  A demonstrative example to check 

the applicability of the MSM operators of IVTSFSs is presented which 

established the selection of applicants. To show the supremacy of the newly 

established MSM operators, a comprehensive comparative study is designed 

numerically. 
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1. Introduction 

To describe the belongingness of objects to certain phenomena under uncertainty and vagueness, the 

theory of intuitionistic fuzzy set (IFS) was investigated by Atanassov (1986), Additionally, the theory of 

interval- Valued (IV) IFS was deliberated by Atanassov (1999) which is the extension of the fuzzy set (FS) 

(Zadeh, 1965). Additionally, the theory of interval-valued (IVFS) was deliberated by Bustince, H et al. 

(2009). IFS is a generalized form of FS to manage vague data in day-to-day life issues where the degree of 

membership (DM) and the degree of non-membership (DNM) are denoted by 𝑚𝑖 and 𝑑𝑖. Some recent work 

on IVIFS can be found in (Garg & Rani, 2019a), (Garg & Kumar, 2019), (Burillo & Bustince, 1996), 

(Grzegorzewski, 2004), (Garg & Rani 2019b). To handle such kind of information, a less restricted fuzzy 
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framework of Pythagorean FS (PyFS) was developed by Yager (2013). Some recent work on the theory of 

IVPyFS can be seen in (Peng & Li, 2019), (Garg, 2016), (Garg, 2018). Likewise, IVIFS and IVPyFS also 

face applicability issues as some duplets ([𝑚ℓ, 𝑚𝓊], [𝑑ℓ, 𝑑𝓊]) cannot be sorted by IVIFS or IVPyFS. Due to 

the fact, a relatively more flexible frame of q-rung orthopair FS (QROFS) was developed by Yager (2016) 

that allows the q-power of the DM and DNM in the range of 0 to 1. the theory of interval-valued QROFS 

(IVQROFS) was deliberated by Joshi et al. (2018). This framework of IVQROFS removes the previously 

existing barriers by introducing a variable parameter 𝑞 ∈ ℤ+. Due to this parameter 𝑞 every duplet can be 

regarded to lie in the frame of IVQROFS. Some recent work on IVQROFSs can be seen in (Garg, 2021), (Ali 

& Mahmood, 2020), (Garg et al., 2021a). 

Cuong (2013) observed that the description of uncertain events using the DM and the DNM is not 

sufficient and the opinion of remaining degree of abstain denoted by (DA)and the refusal degree expressed 

by (DR) have also a key role in the description modeling of the human observation. Cuong presented the 

notion of picture fuzzy set (PFS). The theory of IV picture fuzzy set (IVPFS) was deliberated by Khalil et al. 

(2019). A great amount of research on IVPFS and its applications is studied in (Liu et al., 2019), (Wei et al., 

2019). In numerous practical situations, the theory of IVPFS is not applicable. Due to this fact, the theory of 

spherical FS (SFS) and TSFS was developed by Mahmood et al. (2019). The notion of SFS and TSFS 

significantly enlarge the range for assigning the DM, DNM, and DA but still, some triplets are uncategorized 

which leads to Mahmood et al. The theory of IV spherical fuzzy (IVSF) set (IVSFS) and IVTSFS were 

deliberated by K. Ullah et al. (2019). to develop the notion of IVTSFS and IVTSFS that provides limitless 

flexibility for the assigning of the DM, DNM, DA, etc. An IVTSFS has an associated variable parameter 𝑞 ∈
ℤ+ that can categorize every triplet as an IVTSF number (IVTSFN). The IVTSFS is a novel addition to the 

study of fuzzy sets and its generalization and has gotten serious attention recently. Recent studies on the 

aggregation operators (AOs) of the IVTSFSs can be seen in (Mahmood et al., 2020), (Garg et al., 2018), 

(Garg et al., 2021b), (Ullah et al., 2019), while studies on the information measures of the IVTSFSs can be 

seen in (Hwang & Rhee, 2004), (Gorzałczany, 1987). Some studies on the IVTSF graphs and IVTSF soft sets 

can be viewed in (Kalathian et al., 2020), (Ashtiani et al., 2009).  

To find the interrelationships among any fuzzy information, the MSM operators are considered among the 

significant AOs. The theory of the MSM operator was initiated by Maclaurin (1729) as an aggregation tool 

for non-negative real numbers. This concept was extended to generalized MSM operators of two variables by 

DeTemple and Robertson (1979). The concept of MSM operators was greatly utilized in various fuzzy 

settings to comply with information under uncertainties. MSM operators of IVIFSs are investigated in the 

problems of multi-attribute decision making (MADM) by Qin and Liu (2014). Wei et al. (2018) extended the 

notion of MSM operators to the IVPyF environment which covers a wide range of information in the MADM 

process. By observing the restricted range of the MSM operators of the IVIFSs and IVPyFS, Wang et al. 

(2019) developed the MSM operators for IVQROFSs where the ability to aggregate the uncertain information 

has increased sufficiently. It also handles the information in the context of IVIFSs, IVPyFSs, and IVq-

ROPFS.   If we observe the theory of MSM operators developed in (DeTemple & Robertson, 1979), (Qin & 

Liu, 2014), (Wei et al., 2018), (Wang et al., 2019), it discusses only two aspects of uncertain information by 

using the DM and DNM where the abstinence and refusal information is lost. To reduce the information loss 

and to incorporate the abstinence and refusal degrees of the information into account while aggregating 

information, we aim to develop MSM operators in the frame of IVTSFS. By doing so, we incorporate the 

four aspects of the uncertain information with the help of the DM, DNM, DA, and DR associated by a 

varying parameter 𝑞 ∈ ℤ+ that ensures a large range for the various degrees. Some key features of the 

manuscript are discussed below: 

1. Investigation of the notion of IVTSFMSM operator in the frame of IVTSFS using the DM, DNM, DA, 

and DR. 

2. A study of the characteristics of the IVTSMSM operators.  

3. Investigating the superiority of the IVTSMSM operators over the previously defined MSM operators of 

IVIFSs, IVPyFSs, and IVq- QROFSs theoretically and with the help of examples.  

4. Setting up a MAGDM procedure based on IVTSFMSM operators. 

The summary of this paper is as follows: In section 2, we recall the idea of IVTSFS, and their 

fundamental laws followed by an introduction to the notion of MSM operator. In section 3, we develop 

IVTSFMSM operator, IVTSFWMSM operator followed by an investigative study. In section 4, the idea of 

MSM operator is further extended to IVTSFDMSM and IVTSFWDMSM operator. Moreover, we also study 

some special cases of our proposed methodology. In section 5, it is proved that the IVTSFMSM operator is a 

generalized form of the previously defined MSM operators with the help of some restrictions. In section 6, a 

MADM procedure based on IVTSFMSM operators is developed followed by a thorough numerical example 

to show the applicability of our defined operators. A comparative investigation of our defined theory is 
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established with previously obtained MSM operators in section 7 where the advantages of the currently 

defined MSM operators over the MSM operators of IVIFSs, IVq-QROFSs, and IVPyFSs are proposed. In the 

end, the whole paper is summarized in conclusion and some future work is discussed in section 8. 

2. Preliminaries 

Firstly, we study the notion of IVTSFS and its fundamental terms and notions. For further development of 

this article we expressed the idea of MSM operators. Throughout this article, the symbol 𝑌 represents the 

universal set. and the triplet (𝑚, 𝑎, 𝑑) denotes the DM, DA, and DF. Throughout this paper 𝜚 = 1, 2, 3…𝑛 

and 𝔵 = 1,2,3, … 𝑛 denote the indexing terms. Throughout this paper (𝑦) = [𝑚ℓ(𝑦),𝑚𝓊(𝑦)] ,𝑎(𝑦) =
[𝑎ℓ(𝑦), 𝑎𝓊(𝑦)], 𝑑(𝑦) = [𝑑ℓ(𝑦), 𝑑𝓊(𝑦)]. We discuss some basic definitions of IVTSFS (Ullah et al., 2019), 

MSM operator and DMSM operator (Maclaurin, 1729). 

Definition 1: (Ullah et al., 2019) A IVTSFS 𝑃 is elaborated by: 

𝑃 = {(𝑦, (𝑚(𝑦), 𝑎(𝑦), 𝑑(𝑦))) : 𝑦 ∈ 𝑌} 

with a condition that 0 ≤ (𝑚𝑞)𝓊(𝑦) + (𝑎𝑞)𝓊(𝑦) + (𝑑𝑞)𝓊(𝑦) ≤ 1, 𝑞 ∈ ℤ+. Here (𝑦) = [𝑚ℓ(𝑦),𝑚𝓊(𝑦)] 
,𝑎(𝑦) = [𝑎ℓ(𝑦), 𝑎𝓊(𝑦)], 𝑑(𝑦) = [𝑑ℓ(𝑦), 𝑑𝓊(𝑦)] The expression 𝑟(𝑦) = [𝑟ℓ(𝑦), 𝑟𝓊(𝑦)] =

[√1 − ((𝑚𝓊)𝑞(𝑦) + (𝑎𝓊)𝑞(𝑦) + (𝑑𝓊)𝑞(𝑦))
𝑞

, √1 − ((𝑚ℓ)𝑞(𝑦) + (𝑎ℓ)𝑞(𝑦) + (𝑑ℓ)𝑞(𝑦))
𝑞

] is termed as DR. 

We call 𝑃 = (𝑚, 𝑎, 𝑑) = ([𝑚ℓ(𝑦),𝑚𝓊(𝑦)], [𝑎ℓ(𝑦), 𝑎𝓊(𝑦)], [𝑑ℓ(𝑦), 𝑑𝓊(𝑦)]) a IVTSF number (IVTSFN). 

Definition 2: (Ullah et al., 2019) Let 𝑃 = (𝑚, 𝑎, 𝑑), 𝑃1 = (𝑚1, 𝑎1, 𝑑1) and 𝑃2 = (𝑚2, 𝑎2, 𝑑2)  be three 

IVTSFNs and 𝛾 > 0. Then 

1. 𝑃1⨁𝑃2 =

([√(𝑚1
ℓ)
𝑞
+ (𝑚2

ℓ)
𝑞
− (𝑚1

ℓ)
𝑞
(𝑚2

ℓ)
𝑞
,

𝑞

√(𝑚1
𝓊)𝑞 + (𝑚2

𝓊)𝑞 − (𝑚1
𝓊)𝑞(𝑚2

𝓊)𝑞
𝑞

] [𝑎1
ℓ𝑎2

ℓ, 𝑎1
𝓊𝑎2

𝓊], [𝑑1
ℓ𝑑2

ℓ, 𝑑1
𝓊𝑑2

𝓊]) 

2. 𝑃1⨂𝑃2 =

(

 
 
[𝑚1

ℓ𝑚2
ℓ , 𝑚1

𝓊𝑚2
𝓊], [√(𝑎1

ℓ)
𝑞
+ (𝑎2

ℓ)
𝑞
− (𝑎1

ℓ)
𝑞
(𝑎2

ℓ)
𝑞
 

𝑞

, √(𝑎1
𝓊)𝑞 + (𝑎2

𝓊)𝑞 − (𝑎1
𝓊)𝑞(𝑎2

𝓊)𝑞
𝑞

] ,

[√(𝑑1
ℓ)
𝑞
+ (𝑑2

ℓ)
𝑞
− (𝑑1

ℓ)
𝑞
(𝑑2

ℓ)
𝑞
 

𝑞

, √(𝑑1
𝓊)𝑞 + (𝑑2

𝓊)𝑞 − (𝑑1
𝓊)𝑞(𝑑2

𝓊)𝑞
𝑞

]
)

 
 

 

3. 𝛾𝑃 = ([√1 − (1 − (𝑚ℓ)𝑞)𝛾,
𝑞

 √1 − (1 − (𝑚𝓊)𝑞)𝛾
𝑞

] , [(𝑎ℓ)
𝑞
, (𝑎𝓊)𝑞], [(𝑑ℓ)

𝑞
, (𝑑𝓊)𝑞]) 

4. (𝑃)𝛾 =

([(𝑚ℓ)
𝛾
, (𝑚𝓊)𝛾], [√1 − (1 − (𝑎ℓ)𝑞)𝛾,

𝑞
√1 − (1 − (𝑎𝓊)𝑞)𝛾
𝑞

] , [√1 − (1 − (𝑑ℓ)𝑞)𝛾,
𝑞

√1 − (1 − (𝑑𝓊)𝑞)𝛾
𝑞

]) 

5. (𝑃𝑐) = ([𝑑ℓ, 𝑑𝓊], [𝑎ℓ, 𝑎𝓊], [𝑚ℓ,𝑚𝓊]) 

Definition 3: Consider 𝑃 = (𝑚, 𝑎, 𝑑) = ([𝑚ℓ(𝑦),𝑚𝓊(𝑦)], [𝑎ℓ(𝑦), 𝑎𝓊(𝑦)], [𝑑ℓ(𝑦), 𝑑𝓊(𝑦)]) be any 

IVTSFN. Then score function and accuracy function is expressed as:  

Ṥ(𝑃) =
(𝑚ℓ)

𝑞
(1 − (𝑎ℓ)

𝑞
− (𝑑ℓ)

𝑞
) + (𝑚𝓊)𝑞(1 − (𝑎𝓊)𝑞 − (𝑑𝓊)𝑞)

3
, Ṥ(𝑃) ∈ [0,1] 

Ê(𝑃) = (𝑚𝑞 + 𝑎𝑞 + 𝑑𝑞), Ê(𝑃) ∈ [0,1] 

Based on the  above-defined two rules, we categorize any two IVTSFNs 𝑃1 = (𝑚1, 𝑎1, 𝑑1) and  𝑃2 =

(𝑚2, 𝑎2, 𝑑2) then the score value can be obtained as Ṥ(𝑃1) =
(𝑚1

ℓ)
𝑞
(1−(𝑎1

ℓ)
𝑞
−(𝑑1

ℓ)
𝑞
) + (𝑚1

𝓊)𝑞(1−(𝑎1
𝓊)𝑞−(𝑑1

𝓊)𝑞)

3
 

and Ṥ(𝑃2) =
(𝑚2

ℓ)
𝑞
(1−(𝑎2

ℓ)
𝑞
−(𝑑2

ℓ)
𝑞
)+(𝑚2

𝓊)𝑞(1−(𝑎2
𝓊)𝑞−(𝑑2

𝓊)𝑞)

3
 and accuracy value can be calculated as Ê(𝑃1) =

𝑚1
𝑞
+ 𝑎1

𝑞
+ 𝑑1

𝑞
 and Ê(𝑃2) = 𝑚2

𝑞
+ 𝑎2

𝑞
+ 𝑑2

𝑞
. Then 

1. If Ṥ(𝑃1) <  Ṥ(𝑃2) then 𝑃1 < 𝑃2 

2. If Ṥ(𝑃1) = Ṥ(𝑃2) then 
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1) If Ê(𝑃1) < Ê(𝑃2) then 𝑃1 < 𝑃2 

2) If Ê(𝑃1) =  Ê(𝑃2) then 𝑃1 = 𝑃2 

Definition 4: (Maclaurin, 1729) Let 𝑃𝜚 be the collection of positive numbers. then the MSM operator is 

elaborated by: 

𝑀𝑆𝑀𝐾(𝑃1, 𝑃2, … , 𝑃𝑛) = (
∑ ∏ 𝑃𝑖𝜚

𝔵
𝜚=11≤𝑖1≤⋯≤𝑖𝔵≤𝑛

𝐶𝑛
𝔵 )

1
𝔵

 

where 𝐶n
k represents the binominal coefficients and (𝑖1, 𝑖2, 𝑖3, … , 𝑖𝔵) denote all the k-tuples. MSM operator 

satisfies the following conditions: 

1. 𝑀𝑆𝑀𝐾(0,0,… , 0) = 0. 

2. 𝑀𝑆𝑀𝐾(𝑃, 𝑃, … , 𝑃) = 𝑃. 

3. 𝑀𝑆𝑀𝐾(𝑃1, 𝑃2, … , 𝑃𝑛) ≤ 𝑀𝑆𝑀𝐾(𝑄1, 𝑄2, … , 𝑄𝑛) if 𝑃𝑖 ≤ 𝑄𝑖 ∀ 𝑖. 
4. 𝑚𝑖𝑛{𝑃𝑖} ≤ 𝑀𝑆𝑀𝐾(𝑃1, 𝑃2, … , 𝑃𝑛) ≤ 𝑚𝑎𝑥{𝑃𝑖} 

Definition 5: (Maclaurin, 1729) Let 𝑃𝜚 be the collection of positive numbers then the DMSM operator is 

elaborated by: 

𝐷𝑀𝑆𝑀𝐾(𝑃1 , 𝑃2, … , 𝑃𝑛) =
1

𝔵

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

( ∑
𝔵

𝜚=1
𝑃𝑖𝜚)

1
𝐶𝑛
𝔵

)

 
 

 

Where binomial coefficient is denoted by Cn
k with (𝑖1, 𝑖2, … , 𝑖𝔵) represent the k-tuple combination of 

(1,2, … , 𝑛). 
 

3. IVTSFMSM and IVTSFWMSM Operators 

In this study, we combine the idea of IVMSM and IVWMSM operators with IVTSFSs to investigate the 

idea of IVTSFMSM and IVTSFWMSM operators and discussed their different properties. Moreover, the 

special cases of the elaborated operators are also discussed. 

Definition 6: Let 𝑃𝜚 = (𝑚𝜚, 𝑎𝜚 , 𝑑𝜚) be the collection of IVTSFNs. Here 𝑚𝜚 = [𝑚𝜚
ℓ, 𝑚𝜚

𝓊], 𝑎𝜚 =

[𝑎𝜚
ℓ, 𝑎𝜚

𝓊] and 𝑑𝜚 = [𝑑𝜚
ℓ, 𝑑𝜚

𝓊]. Then the IVTSFMSM operator is elaborated by: 

𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀𝔵(𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛) = (

⨁
1≤𝑖1≤⋯𝑖𝔵≤𝑛

(⨂𝜚=1
𝔵  𝑃𝑖𝜚)

𝐶𝑛
𝔵 )

1
𝔵

 

Where binomial coefficient is denoted by Cn
k and (𝑖1, 𝑖2, … , 𝑖𝔵) represent the k-tuple combination of 

(1,2, … , 𝑛). 

Theorem 1: Let 𝑃𝜚 = (𝑚𝜚 , 𝑎𝜚 , 𝑑𝜚) be the collection of IVTSFNs. Here 𝑚𝜚 = [𝑚𝜚
ℓ , 𝑚𝜚

𝓊], 𝑎𝜚 = [𝑎𝜚
ℓ, 𝑎𝜚

𝓊] 

and 𝑑𝜚 = [𝑑𝜚
ℓ, 𝑑𝜚

𝓊]. Then by using the idea of IVTSFMSM operators, we obtain: 
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𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀 (𝑃1, 𝑃2, 𝑃3, … 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ (1− (∏𝑚𝑖

ℓ
𝜚

𝔵

𝜚=1

 )

𝑞

)
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 )

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ (1− (∏𝑚𝑖

𝓊
𝜚

𝔵

𝜚=1

 )

𝑞

)
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 )

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ (1− ( ∏(1 − (𝑎𝑖

ℓ
𝜚
)
𝑞
)

𝔵

𝜚=1

))
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 )

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ (1−( ∏(1 − (𝑎𝑖

𝓊
𝜚
)
𝑞
)

𝔵

𝜚=1

))
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 )

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞
)))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚
𝓊)

𝑞
)))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Proof: By using Definition (6) we have: 

⨂
𝜚=1

𝔵

𝑃𝑖𝜚 =

(

 
 
 
 [ ∏

𝜚=1

𝔵

𝑚𝑖𝜚
ℓ , ∏
𝜚=1

𝔵

𝑚𝑖𝜚
𝓊] , [√1 − ∏

𝜚=1

𝔵

(1 − (𝑎𝑖𝜚
ℓ)

𝑞

)
𝑞

, √1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚
𝓊)

𝑞

)
𝑞

] ,

[√1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚
ℓ)

𝑞

)
𝑞

, √1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚
𝓊)

𝑞

)
𝑞

]

)

 
 
 
 

 

 and 

⨁
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

( ⨂
𝜚=1

𝔵

𝑃𝑖𝜚) =  

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 

√
1 − ∏ 

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑚𝑖
ℓ
𝜚
) 𝑞)

𝑞
,
√
1 − ∏ 

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑚𝑖
𝓊
𝜚
) 𝑞)

𝑞

]
 
 
 
 

,

[
 
 
 
 

∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚
ℓ)

𝑞

)
𝑞

, ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚
𝓊)

𝑞

)
𝑞

]
 
 
 
 

,

[
 
 
 
 

∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞

)
𝑞

, ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

)
𝑞

]
 
 
 
 

)
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1

𝐶𝑛
𝔵  ⨁
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

( ⨂
𝜚=1

𝔵

𝑃𝑖𝜚) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑚𝑖
ℓ
𝜚
) 𝑞)

)

 
 

1
𝐶𝑛
𝔵

𝑞

,

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑚𝑖
𝓊
𝜚
) 𝑞)

)

 
 

1
𝐶𝑛
𝔵

𝑞

]
 
 
 
 
 
 

,

[
 
 
 
 
 

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖
ℓ
𝜚
)
𝑞

)
𝑞

)

 
 

1
𝐶𝑛
𝔵

,

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖
𝓊
𝜚
)
𝑞

)
𝑞

)

 
 

1
𝐶𝑛
𝔵

]
 
 
 
 
 

,

[
 
 
 
 
 

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞

)
𝑞

)

 
 

1
𝐶𝑛
𝔵

,

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

)
𝑞

)

 
 

1
𝐶𝑛
𝔵

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Therefore  

 𝐼𝑉TSFMSM(𝑃1, 𝑃2, … , 𝑃𝑛) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 

(

  
 
√1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (∏ 𝑚𝑖
ℓ
𝜚

𝔵
𝜚=1 ) 𝑞)

)

 

1

𝐶𝑛
𝔵

𝑞

)

  
 

1

𝔵

,

(

  
 
√1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (∏ 𝑚𝑖
𝓊
𝜚

𝔵
𝜚=1 ) 𝑞)

)

 

1

𝐶𝑛
𝔵

𝑞

)

  
 

1

𝔵

]
 
 
 
 
 
 

,

[
 
 
 
 
 

√
  
  
  
  
 
 

1 −

(

 
 
1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝒶𝑖
ℓ
𝜚
)
𝑞

))

)

 

1

𝐶𝑛
𝔵

)

 
 

1

𝔵

,

𝑞

√
  
  
  
  
 
 

1 −

(

 
 
1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝒶𝑖
𝓊
𝜚
)
𝑞

))

)

 

1

𝐶𝑛
𝔵

)

 
 

1

𝔵

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√
  
  
  
  
 
 

1 −

(

 
 
1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞

))

)

 

1

𝐶𝑛
𝔵

)

 
 

1

𝔵

𝑞

,

√
  
  
  
  
 
 

1 −

(

 
 
1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

))

)

 

1

𝐶𝑛
𝔵

)

 
 

1

𝔵

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Moreover, the ideas of idempotency, monotonicity, and boundedness are developed. 

 

Property 1: Let 𝑝𝜚 = (𝑚𝜚, 𝑎𝜚 , 𝑑𝜚) be the collection of IVTSFNs. Here (𝑦) = [𝑚ℓ(𝑦),𝑚𝓊(𝑦)] ,𝑎(𝑦) =

[𝑎ℓ(𝑦), 𝑎𝓊(𝑦)], 𝑑(𝑦) = [𝑑ℓ(𝑦), 𝑑𝓊(𝑦)]. If 𝑃ϱ = 𝑃 then 𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀(𝑃1 , 𝑃2, 𝑃3, … , 𝑃𝑛) = 𝑃. 

 

Proof: We know that 𝑃𝜚 = (𝑚𝜚 , 𝑎𝜚 , 𝑑𝜚) and 𝑃 = (𝑚𝑃, 𝑎𝑃 , 𝑑𝑃). Here 𝑚𝑃 = [𝑚𝑃
ℓ , 𝑚𝑃

𝓊], 𝑎𝑃 = [𝑎𝑃
ℓ , 𝑎𝑃

𝓊], 

𝑑𝑃 = [𝑑𝑃
ℓ , 𝑑𝑃

𝓊] then by using Theorem (1) we obtain: 
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   𝐼𝑉TSFMSM(𝑃 , 𝑃 , … , 𝑃) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 

(

  
 
√1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (∏ 𝑚𝑝
ℓ𝔵

𝜚=1 ) 𝑞)

)

 

1

𝐶𝑛
𝔵

𝑞

)

  
 

1

𝔵

,

(

  
 
√1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (∏ 𝑚𝑝
𝓊𝔵

𝜚=1 ) 𝑞)

)

 

1

𝐶𝑛
𝔵

𝑞

)

  
 

1

𝔵

]
 
 
 
 
 
 

,

[
 
 
 
 
 

√
  
  
  
  
 
 

1 −

(

 
 
1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − ( 𝑎𝑃
ℓ)

𝑞
))

)

 

1

𝐶𝑛
𝔵

)

 
 

1

𝔵

𝑞

,

√
  
  
  
  
 
 

1 −

(

 
 
1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − ( 𝑎𝑃
𝓊)𝑞))

)

 

1

𝐶𝑛
𝔵

)

 
 

1

𝔵

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√
  
  
  
  
 
 

1 −

(

 
 
1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − ( 𝑑𝑃
ℓ)

𝑞
))

)

 

1

𝐶𝑛
𝔵

)

 
 

1

𝔵

𝑞

,

√
  
  
  
  
 
 

1 −

(

 
 
1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − ( 𝑑𝑃
𝓊)𝑞))

)

 

1

𝐶𝑛
𝔵

)

 
 

1

𝔵

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ (1 − (  𝑚𝑃

ℓ) 𝑞𝔵)
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 )

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ (1 − (  𝑚𝑃

𝓊) 𝑞𝔵)

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 )

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (1 − ( 𝑎𝑃
ℓ)

𝑞 
)
𝔵
)

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (1 − ( 𝑎𝑃
𝓊)𝑞 )𝔵)

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (1 − ( 𝑑𝑃
ℓ)

𝑞 
)
𝔵
)

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (1 − ( 𝑑𝑃
𝓊)𝑞 )𝔵)

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 

(√1 − ((1 − (  𝑚𝑃
ℓ) 𝑞𝔵)

𝐶𝑛
𝔵

)

1
𝐶𝑛
𝔵

𝑞

)

1
𝔵

, (√1 − ((1 − (  𝑚𝑃
𝓊) 𝑞𝔵)𝐶𝑛

𝔵
)
1
𝐶𝑛
𝔵

𝑞

)

1
𝔵

]
 
 
 
 

,

[
 
 
 
 
 

√1 − (1 − ((1 − (1 − ( 𝑎𝑃
ℓ)

𝑞 
)
𝔵
)
𝐶𝑛
𝔵

)

1
𝐶𝑛
𝔵

)

1
𝔵𝑞

, √1 − (1 − ((1 − (1 − ( 𝑎𝑃
𝓊)𝑞 )𝔵)𝐶𝑛

𝔵
)
1
𝐶𝑛
𝔵
)

1
𝔵

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√1 − (1 − ((1 − (1 − ( 𝑑𝑃
ℓ)

𝑞 
)
𝔵
)
𝐶𝑛
𝔵

)

1
𝐶𝑛
𝔵

)

1
𝔵𝑞

, √1 − (1 − ((1 − (1 − ( 𝑑𝑃
𝓊)𝑞 )𝔵)𝐶𝑛

𝔵
)
1
𝐶𝑛
𝔵
)

1
𝔵

𝑞

]
 
 
 
 
 

)
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=

(

 
 
 
 
 
 
 
 
 [(√1 − ((1 − (  𝑚𝑃

ℓ ) 𝑞𝔵)
 
)
 𝑞

)

1
𝔵

, (√1 − ((1 − (  𝑚𝑃
𝓊) 𝑞𝔵) ) 

𝑞
)

1
𝔵
] ,

[ √1 − (1 − ((1 − (1 − ( 𝑎𝑃
ℓ)

𝑞 
)
𝔵
)
 

)
 

)

1
𝔵

𝑞

 

,  √1 − (1 − ((1 − (1 − ( 𝑎𝑃
𝓊)𝑞 )𝔵) ) )

1
𝔵

𝑞
 

] ,

[√1 − (1 − ((1 − (1 − ( 𝑑𝑃
ℓ)

𝑞 
)
𝔵
)
 

)
 

)

1
𝔵

𝑞

, √1 − (1 − ((1 − (1 − ( 𝑑𝑃
𝓊)𝑞 )𝔵) ) )

1
𝔵

𝑞

]

)

 
 
 
 
 
 
 
 
 

 

= ([(√(𝑚𝑃
ℓ)

𝑞𝔵𝑞

)

1
𝔵

, (√(𝑚𝑃
𝓊)𝑞𝔵

𝑞
)

1
𝔵
] ,  [√( 𝑎𝑃

ℓ)
𝑞𝑞

, √( 𝑎𝑃
𝓊)𝑞

𝑞
]

 

, [√( 𝑑𝑃
ℓ)

𝑞𝑞

, √( 𝑑𝑃
𝓊)𝑞

𝑞
]) 

= ([𝑚𝑃
ℓ , 𝑚𝑃

𝓊], [𝑎𝑃
ℓ , 𝑎𝑃

𝓊], [𝑑𝑃
ℓ , 𝑑𝑃

𝓊]) 
 

Property 2: Let 𝑃𝜚 and 𝑃�́� be the collection of IVTSFNs: if [𝑚𝜚
ℓ, 𝑚𝜚

𝓊] ≥  [𝑚𝜚́
ℓ, 𝑚𝜚́

𝓊], [𝑎𝜚
ℓ, 𝑎𝜚

𝓊] ≤

 [𝑎�́�
ℓ, 𝑎�́�

𝓊] , [𝑑𝜚
ℓ, 𝑑𝜚

𝓊] ≤  [𝑑�́�
ℓ
, 𝑑�́�

𝓊
], for all 𝜚 then: 

𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀(𝑃1, 𝑃2, … , 𝑃𝑛) ≥ 𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀(𝑃1́, 𝑃2́, … , 𝑃�́�) 
 

Proof: By hypothesis, it is clear that 𝔵 ≥ 1, [𝑚𝜚
ℓ, 𝑚𝜚

𝓊] ≥  [𝑚𝜚́
ℓ, 𝑚𝜚́

𝓊] ≥ 0, [𝑎𝜚
ℓ, 𝑎𝜚

𝓊] ≤  [𝑎�́�
ℓ, 𝑎�́�

𝓊] ≤

0, [𝑑𝜚
ℓ, 𝑑𝜚

𝓊] ≤  [𝑑�́�
ℓ
, 𝑑�́�

𝓊
] ≤ 0 and [𝑚𝑖𝜚

ℓ , 𝑚𝑖𝜚
𝓊 ] ≥ [𝑚𝑖𝜚

ℓ́ , 𝑚𝑖𝜚
𝓊́ ] ≥ 0, [𝑎𝑖𝜚

ℓ , 𝑎𝑖𝜚
𝓊 ] ≤ [𝑎𝑖𝜚

ℓ́ , 𝑎𝑖𝜚
�́� ] ≤ 0, [𝑑𝑖𝜚

ℓ , 𝑑𝑖𝜚
𝓊 ] ≤

[𝑑𝑖𝜚 
ℓ́ , 𝑑𝑖𝜚 

�́� ] ≤ 0. Based on the given condition, for all j (j = 1,2, … , n; ϱ = 1,2, … , k) we obtain:   

[ ∏
𝜚=1

𝔵

𝑚𝑖
ℓ
𝜚
, ∏
𝜚=1

𝔵

𝑚𝑖
𝓊
𝜚
] ≥ [ ∏

𝜚=1

𝔵

𝑚𝑖
ℓ
𝜚
́ , ∏

𝜚=1

𝔵

𝑚𝑖
𝓊
𝜚
́ ] ⇒ [1 − ( ∏

𝜚=1

𝔵

𝑚𝑖
ℓ
𝜚
)

𝑞

, 1 − ( ∏
𝜚=1

𝔵

𝑚𝑖
𝓊
𝜚
)

𝑞

]

≤ [1 − ( ∏
𝜚=1

𝔵

𝑚𝑖
ℓ
𝜚
́  )

𝑞

, 1 − ( ∏
𝜚=1

𝔵

 𝑚𝑖
𝓊
𝜚
́  )

𝑞

] 

⇒ [ ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑚𝑖
ℓ
𝜚
)

𝑞

) , ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑚𝑖
𝓊
𝜚
)

𝑞

)]

≤ [ ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

 𝑚𝑖
ℓ
𝜚
́ )

𝑞

) , ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

 𝑚𝑖
𝓊
𝜚
́ )

𝑞

)] 

⇒

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑚𝑖
ℓ
𝜚
) 𝑞)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑚𝑖
𝓊
𝜚
) 𝑞)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

≥

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑚𝑖
ℓ
𝜚
́ ) 𝑞)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑚𝑖
𝓊
𝜚
́ ) 𝑞)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

 

Now, for abstinence 



                ISSN: 2812-9318 

Operations Research and Engineering Letters, Vol. 1, No. 1, 2022:  44- 75 

52 

[𝑎𝑖
ℓ
𝜚
, 𝑎𝑖

𝓊
𝜚
] ≤ [𝑎𝑖𝜚 

ℓ́ , 𝑎𝑖𝜚 
�́� ] ⇒ [1 − (𝑎𝑖𝜚

ℓ )
𝑞

, 1 − (𝑎𝑖𝜚
𝓊)

𝑞

] ≤ [1 − (𝑎𝑖𝜚 
ℓ́ )

𝑞

, 1 − (𝑎𝑖𝜚 
�́� )

𝑞

]

⇒ [1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚
ℓ )

𝑞

) , 1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚
𝓊 )

𝑞

)]

≤ [1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚 
ℓ́ )

𝑞

) , 1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚 
�́� )

𝑞

)] 

[
 
 
 
 

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚
ℓ )

𝑞

))

)

 

1
𝐶𝑛
𝔵

,

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚
𝓊 )

𝑞

))

)

 

1
𝐶𝑛
𝔵

]
 
 
 
 

≤

[
 
 
 
 

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚 
ℓ́ )

𝑞

))

)

 

1
𝐶𝑛
𝔵

,

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚 
�́� )

𝑞

))

)

 

1
𝐶𝑛
𝔵

]
 
 
 
 

 

[
 
 
 
 
 

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚
ℓ )

𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

,

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚
𝓊 )

𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

]
 
 
 
 
 

≥

[
 
 
 
 
 
 
 
 
 
 

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚 
ℓ́ )

𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 
,

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚 
�́� )

𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

,

]
 
 
 
 
 
 
 
 
 
 

 

⇒

[
 
 
 
 
 
 

√
  
  
  
  
  
  

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚
ℓ )

𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

,

√
  
  
  
  
  
 

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚
𝓊)

𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞𝑞

]
 
 
 
 
 
 

≥

[
 
 
 
 
 
 

√
  
  
  
  
  
 

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚 
ℓ́ )

𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
 

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚 
�́� )

𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

]
 
 
 
 
 
 

 

As [𝑑𝑖
ℓ
𝜚
, 𝑑𝑖

𝓊
𝜚
] ≤ [𝑑𝑖𝜚 

ℓ́ , 𝑑𝑖𝜚 
�́� ] ⇒ [1 − (𝑑𝑖

ℓ
𝜚
)
𝑞

, 1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

] ≥ [1 − (𝑑𝑖𝜚 
ℓ́ )

𝑞

, 1 − (𝑑𝑖𝜚 
�́� )

𝑞

]. 

⇒ [1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞

) , 1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

)] ≤ [1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚 
ℓ́ )

𝑞

) , 1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚 
�́� )

𝑞

)] 
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[
 
 
 
 

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞

))

)

 

1
𝐶𝑛
𝔵

,

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

))

)

 

1
𝐶𝑛
𝔵

]
 
 
 
 

≤

[
 
 
 
 

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚 
ℓ́ )

𝑞

))

)

 

1
𝐶𝑛
𝔵

,

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚 
�́� )

𝑞

))

)

 

1
𝐶𝑛
𝔵

]
 
 
 
 

 

⇒

[
 
 
 
 
 

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

,

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

]
 
 
 
 
 

≥

[
 
 
 
 
 

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚 
ℓ́ )

𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

,

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚 
�́� )

𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

]
 
 
 
 
 

⇒

[
 
 
 
 
 
 

√
  
  
  
  
  
 

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
 

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

]
 
 
 
 
 
 

≥

[
 
 
 
 
 
 

√
  
  
  
  
  
 

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚 
ℓ́ )

𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
 

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚 
�́� )

𝑞

))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

]
 
 
 
 
 
 

 

From the above analysis, we obtain: 

𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀(𝑃1, 𝑃2, … , 𝑃𝑛) ≥ 𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀(𝑃1́, 𝑃2́, … , 𝑃�́�) 

 

Property 3: Let 𝑃𝜚and 𝑃�́� be the collection of two IVTSFNs. Then: 

𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀(𝑃1 , 𝑃2, 𝑃3, … 𝑃𝑛) = 𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀(�́�1, �́�2, �́�3, … , �́�𝑛) 

 

Proof: We know that 𝑃�́� is any permutation of 𝑃ϱ then: 

IV𝑇𝑆𝐹𝑀𝑆𝑀(𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛) = (

⊕
1≤𝑖1≤⋯𝑖𝔵≤𝑛

(⨂𝜚=1
𝔵  𝑃𝑖𝜚)

𝐶𝑛
𝔵 )

1
𝔵

 

= (

⊕
1≤𝑖1≤⋯𝑖𝔵≤𝑛

(⨂𝜚=1
𝔵  𝑃𝑖𝜚

́ )

𝐶𝑛
𝔵 )

1
𝔵

=  𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀(�́�1, �́�2, �́�3, … , �́�𝑛) 

 

Property 4: Let 𝑃𝜚 be the collection of IVTSFNs with: 

𝑃− = min 𝑃𝜚 = ([𝑚𝑖𝑛𝑚𝜚
ℓ , 𝑚𝑖𝑛𝑚𝜚

𝓊], [max𝑎𝜚
ℓ , max 𝑎𝜚

𝓊], [max 𝑑𝜚
ℓ , max 𝑑𝜚

𝓊]) 

𝑃+ = max𝑃𝜚 = ([max𝑚𝜚
ℓ , max𝑚𝜚

𝓊], [𝑚𝑖𝑛 𝑎𝜚
ℓ , 𝑚𝑖𝑛 𝑎𝜚

𝓊], [𝑚𝑖𝑛 𝑑𝜚
ℓ , 𝑚𝑖𝑛 𝑑𝜚

𝓊]) 

Then 

𝑃− ≤  𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀(𝑃1, 𝑃2, 𝑃3…𝑃𝑛) ≤ 𝑃+ 
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Proof: By using property 1 and property 2 we get: 

𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀(𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛) ≥ 𝐼𝑉 𝑇𝑆𝐹𝑀𝑆𝑀(𝑃−, 𝑃−, … , 𝑃−) = 𝑃− 

𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀(𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛) ≤  𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀(𝑃+, 𝑃+, … , 𝑃+) = 𝑃+ 

By using the above information, we get: 

𝑃− ≤  𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀(𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛) ≤ 𝑃+ 

 

Example 1: Let 𝑃1 = ([0.3,0.31], [0.5,0.51], [0.6,0.61]), 𝑃2 = ([0.4,0.41], [0.6,0.61], [0.7,0.71]), 𝑃3 =
([0.5,0.51], [0.4,0.41], [0.7,0.71]), 𝑃4 = ([0.6,0.61], [0.5,0.51], [0.6,0.61]) be four IVTSFNs. Now use the 

IVTSFMSM operator to aggregate these four IVTSFNs. Here we take 𝔵 = 2, 𝑞 = 5, then: 

𝑃1⨂𝑃2 = (
[0.3 × 0.4,0.31 × 0.41], [√0.55 + 0.65 − 0.55 × 0.65

5
, √0.515 + 0.615 − 0.515 × 0.615
5

] ,

[√0.65 + 0.75 − 0.65 × 0.75
5

, √0.615 + 0.715 − 0.615 × 0.715
5

]
)

= ([0.12,0.13], [0.63,0.65], [0.74,0.76]) 

𝑃1⨂𝑃3 = (
[0.3 × 0.5,0.31 × 0.51], [√0.55 + 0.45 − 0.55 × 0.45

5
, √0.515 + 0.415 − 0.515 × 0.415
5

] ,

[√0.65 + 0.75 − 0.65 × 0.75
5

, √0.615 + 0.715 − 0.615 × 0.715
5

]
)

= ([0.15,0.16], [0.52,0.54], [0.74,0.76]) 

𝑃1⨂𝑃4 = (
[0.3 × 0.6,0.31 × 0.61], [√0.55 + 0.5 − 0.55 × 0.55

5
, √0.515 + 0.51 − 0.515 × 0.515
5

] ,

[√0.65 + 0.65 − 0.65 × 0.65
5

, √0.615 + 0.615 − 0.615 × 0.615
5

]
)

= ([0.18,0.19], [0.57,0.59], [0.68,0.70]) 

𝑃2⨂𝑃3 = (
[0.4 × 0.5,0.41 × 0.51], [√0.65 + 0.45 − 0.65 × 0.45

5
, √0.615 + 0.415 − 0.615 × 0.415
5

] ,

[√0.75 + 0.75 − 0.75 × 0.75
5

, √0.715 + 0.715 − 0.715 × 0.715
5

]
)

= ([0.20,0.21], [0.61,0.63], [0.79,0.81]) 

𝑃2⨂𝑃4 = (
[0.4 × 0.6,0.41 × 0.61], [√0.65 + 0.55 − 0.65 × 0.55

5
, √0.615 + 0.515 − 0.615 × 0.515
5

] ,

[√0.75 + 0.65 − 0.75 × 0.65
5

, √0.715 + 0.615 − 0.715 × 0.615
5

]
)

= ([0.24,0.25], [0.63,0.65], [0.74,0.76]) 

𝑃3⨂𝑃4 = (
[0.5 × 0.6,0.51 × 0.61], [√0.45 + 0.55 − 0.45 × 0.55

5
, √0.415 + 0.515 − 0.415 × 0.515
5

] ,

[√0.75 + 0.65 − 0.75 × 0.65
5

, √0.715 + 0.615 − 0.715 × 0.615
5

]
)

= ([0.30,0.31], [0.52,0.54], [0.74,0.76]) 
Using formula 

𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀(𝑃1, 𝑃2, 𝑃3, 𝑃4) = (
⨁

1≤𝑖1≤𝑖2≤4
(𝑃𝑖1⨂𝑃𝑖2)

𝐶4
2 )

1

2

= ([0.47,0.49], [0.51,0.52], [0.54,0.56]). 

Definition 7: Let 𝑃𝜚 = (𝑚𝜚, 𝛼𝜚 , 𝑑𝜚) be a collection of IVTSFNs. Here 𝑚𝜚 = [𝑚𝜚
ℓ ,𝑚𝜚

𝓊], 𝑎𝜚 =

[𝑎𝜚
ℓ, 𝑎𝜚

𝓊] and 𝑑𝜚 = [𝑑𝜚
ℓ, 𝑑𝜚

𝓊] Then the IVTSFWMSM operator is elaborated by: 

 𝐼𝑉𝑇𝑆𝐹𝑊𝑀𝑆𝑀(𝑃1, 𝑃2, … , 𝑃𝑛) = (
⨁

1≤𝑖1≤⋯ 𝑖𝔵≤𝑛
(⨂𝜚=1

𝔵  𝑃𝑖𝜚)
𝜔

𝐶𝑛
𝔵 )

1

𝔵

 

Where binomial coefficient is denoted by Cn
k and (𝑖1, 𝑖2, … , 𝑖𝔵) represent the k-tuple combination of 

(1,2, … , 𝑛) and 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)
𝛵 be the weight vector of 𝑃𝜚 and 𝜔𝜚 > 0,∑ 𝜔𝜚 = 1𝑛

𝜚=1 . 

 

Theorem 2: Let 𝑃𝜚 = (𝑚𝜚, 𝑎𝜚 , 𝑑𝜚) be the collection of IVTSFNs. Here 𝑚𝜚 = [𝑚𝜚
ℓ , 𝑚𝜚

𝓊], 𝑎𝜚 =

[𝑎𝜚
ℓ, 𝑎𝜚

𝓊] and 𝑑𝜚 = [𝑑𝜚
ℓ, 𝑑𝜚

𝓊]. Then by using the idea of IVTSFWMSM operators we obtain: 
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 𝐼𝑉𝑇𝑆𝐹𝑊𝑀𝑆𝑀(𝑃1, 𝑃2, … , 𝑃𝑛) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 

(

  
 
√1−

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (∏ (𝑚𝑖
ℓ
𝜚
)
𝑤𝑖𝜚𝔵

𝜚=1 ) 𝑞)

)

 

1

𝐶𝑛
𝔵

𝑞

)

  
 

1

𝔵

,

(

  
 
√1−

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (∏ (𝑚𝑖
𝓊
𝜚
)
𝑤𝑖𝜚𝔵

𝜚=1 ) 𝑞)

)

 

1

𝐶𝑛
𝔵

𝑞

)

  
 

1

𝔵

]
 
 
 
 
 
 

,

[
 
 
 
 
 

√
  
  
  
  
  

1 −

(

 
 
1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚
ℓ )

𝑞
)
𝑤𝑖𝜚

)

)

 

1

𝐶𝑛
𝔵

)

 
 

1

𝔵

𝑞

,

√
  
  
  
  
  

1 −

(

 
 
1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚
𝓊)

𝑞
)
𝑤𝑖𝜚

)

)

 

1

𝐶𝑛
𝔵

)

 
 

1

𝔵

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 

√
  
  
  
  
  

1 −

(

 
 
1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞
)
𝑤𝑖𝜚

)

)

 

1

𝐶𝑛
𝔵

)

 
 

1

𝔵

𝑞

,

√
  
  
  
  
  

1 −

(

 
 
1 −

(

 ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞
)
𝑤𝑖𝜚

)

)

 

1

𝐶𝑛
𝔵

)

 
 

1

𝔵

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Where 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)
𝛵 be the weight vector of 𝑃𝜚 i.e., with a rule that is 𝜔𝜚 > 0,∑ 𝜔𝜚 = 1.𝑛

𝜚=1  

Proof: By using Definition (7) we obtain: 

⨂
𝜚=1

𝔵

(𝑃𝑖𝜚)
𝑤𝑖𝜚

= ([ ∏
𝜚=1

𝔵

(𝑚𝑖
ℓ
𝜚
)
𝑤𝑖𝜚

, ∏
𝜚=1

𝔵

(𝑚𝑖
𝓊
𝜚
)
𝑤𝑖𝜚
] , [ ∏

𝜚=1

𝔵

(𝑎𝑖
ℓ
𝜚
)
𝑤𝑖𝜚

, ∏
𝜚=1

𝔵

(𝑎𝑖
𝓊
𝜚
)
𝑤𝑖𝜚
] , [√1 − ∏

𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

, √1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

]) 

⨁
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

( ⨂
𝜚=1

𝔵

(𝑃𝑖𝜚)
𝑤𝑖𝜚

)

=

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 

√
1 − ∏ 

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑚𝑖
ℓ
𝜚
)
𝑤𝑖𝜚

)

𝑞

)
𝑞

,
√
1 − ∏ 

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑚𝑖
𝓊
𝜚
)
𝑤𝑖𝜚

)

𝑞

)
𝑞

]
 
 
 
 

,

[
 
 
 
 

∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖
ℓ
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

, ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖
𝓊
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

]
 
 
 
 

,

[
 
 
 
 

∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

, ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

]
 
 
 
 

)
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1

𝐶𝑛
𝔵  ⨁
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

( ⨂
𝜚=1

𝔵

𝑃𝑖𝜚)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑚𝑖
ℓ
𝜚
)
𝑤𝑖𝜚

)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

,

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑚𝑖
𝓊
𝜚
)
𝑤𝑖𝜚

)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

]
 
 
 
 
 
 

,

[
 
 
 
 
 

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖
ℓ
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

 
 

1
𝐶𝑛
𝔵

,

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖
𝓊
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

 
 

1
𝐶𝑛
𝔵

]
 
 
 
 
 

,

[
 
 
 
 
 

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

 
 

1
𝐶𝑛
𝔵

,

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

 
 

1
𝐶𝑛
𝔵

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝐼𝑉𝑇𝑆𝐹𝑊𝑀𝑆𝑀𝜔(𝑃1, 𝑃2, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑚𝑖
ℓ
𝜚
)
𝑤𝑖𝜚

)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

,

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑚𝑖
𝓊
𝜚
)
𝑤𝑖𝜚

)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

]
 
 
 
 
 
 

,

[
 
 
 
 
 

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖
ℓ
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

 
 

1
𝐶𝑛
𝔵

,

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖
𝓊
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

 
 

1
𝐶𝑛
𝔵

]
 
 
 
 
 

,

[
 
 
 
 
 

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

 
 

1
𝐶𝑛
𝔵

,

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

√1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

 
 

1
𝐶𝑛
𝔵

]
 
 
 
 
 

)
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𝐼𝑉𝑇𝑆𝐹𝑊𝑀𝑆𝑀𝜔(𝑃1, 𝑃2, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑚𝑖
ℓ
𝜚
)
𝑤𝑖𝜚
)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑚𝑖
𝓊
𝜚
)
𝑤𝑖𝜚
)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖
ℓ
𝜚
)
𝑞
)
𝑤𝑖𝜚

)

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑎𝑖
𝓊
𝜚
)
𝑞
)
𝑤𝑖𝜚

)

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

]
 
 
 
 
 
 
 

 ,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞
)
𝑤𝑖𝜚

)

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞
)
𝑤𝑖𝜚

)

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Some Special Cases for TSFWMSM 

For 𝔵 = 1 the IVTSFWMSM operator is reduced into IVTSF weighted averaging (IVTSFWA) operator. 
𝐼𝑉𝑇𝑆𝐹𝑊𝑀𝑆𝑀𝜔(𝑃1, 𝑃2, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (∏ (𝑚𝑖
ℓ
𝜚
)
𝑤𝑖𝜚

1

𝜚=1
)

𝑞

)

)

 
 

1
𝐶𝑛
1

𝑞

)

 
 
 
 

1
1

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (∏ (𝑚𝑖
𝓊
𝜚
)
𝑤𝑖𝜚

1

𝜚=1
)

𝑞

)

)

 
 

1
𝐶𝑛
1

𝑞

)

 
 
 
 

1
1

]
 
 
 
 
 
 
 

,

 

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

1

(1 − (𝑎𝑖
ℓ
𝜚
)
𝑞
)
𝑤𝑖𝜚

)

)

 
 

1
𝐶𝑛
1

)

 
 
 

1
1

𝑞

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

1

(1 − (𝑎𝑖
𝓊
𝜚
)
𝑞
)
𝑤𝑖𝜚

)

)

 
 

1
𝐶𝑛
1

)

 
 
 

1
1

𝑞

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

1

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞
)
𝑤𝑖𝜚

)

)

 
 

1
𝐶𝑛
1

)

 
 
 

1
1

𝑞

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

1

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞
)
𝑤𝑖𝜚

)

)

 
 

1
𝐶𝑛
1

)

 
 
 

1
1

𝑞

]
 
 
 
 
 
 
 

)
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=

(

 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

√1 − (∏ 

1≤𝑖1≤𝑛

(1 − (𝑚𝑖
ℓ
1
)
𝑞𝜔𝑖1))

1
𝑛𝑞

, √1 − (∏ 

1≤𝑖1≤𝑛

(1 − (𝑚𝑖
𝓊
1
)
𝑞𝜔𝑖1))

1
𝑛𝑞

]
 
 
 
 
 

,

[
 
 
 

(∏ 

1≤𝑖1≤𝑛

√1 − ∏
𝜚=1

1

(1 − (𝑎𝑖
ℓ
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

1
𝑛

, (∏ 

1≤𝑖1≤𝑛

√1 − ∏
𝜚=1

1

(1 − (𝑎𝑖
𝓊
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

1
𝑛

]
 
 
 

,

[
 
 
 

(∏ 

1≤𝑖1≤𝑛

√1 − ∏
𝜚=1

1

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

1
𝑛

, (∏ 

1≤𝑖1≤𝑛

√1 − ∏
𝜚=1

1

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

1
𝑛

]
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

√1 − (∏ 

1≤𝑖1≤𝑛

(1 − (𝑚𝑖
ℓ
1
)
𝑞𝜔𝑖1))

1
𝑛𝑞

, √1 − (∏ 

1≤𝑖1≤𝑛

(1 − (𝑚𝑖
𝓊
1
)
𝑞𝜔𝑖1))

1
𝑛𝑞

]
 
 
 
 
 

,

[
 
 
 

(∏ 

1≤𝑖1≤𝑛

√1 − (1 − (𝑎𝑖
ℓ
1
)
𝑞
)
𝜔𝑖1

𝑞

)

1
𝑛

, (∏ 

1≤𝑖1≤𝑛

√1 − (1 − (𝑎𝑖
𝓊
1
)
𝑞
)
𝜔𝑖1

𝑞

)

1
𝑛

]
 
 
 

,

[
 
 
 

(∏ 

1≤𝑖1≤𝑛

√1 − (1 − (𝑑𝑖
ℓ
1
)
𝑞
)
𝜔𝑖1

𝑞

)

1
𝑛

, (∏ 

1≤𝑖1≤𝑛

√1 − (1 − (𝑑𝑖
𝓊
1
)
𝑞
)
𝜔𝑖1

𝑞

)

1
𝑛

]
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 

 

Since we take 𝑖1 = 𝜚 then 

=

(

 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

√1 − (∏(1 − (𝑚𝜚
ℓ)
𝑞𝜔𝜚

)

𝑛

𝜚=1

)

1
𝑛q

, √1 − (∏(1 − (𝑚𝜚
𝓊)

𝑞𝜔𝜚
)

𝑛

𝜚=1

)

1
𝑛q

]
 
 
 
 
 

,

[
 
 
 

(∏ √1 − (1 − (𝑎𝜚
ℓ)
q
)
𝜔𝜚q

𝑛

𝜚=1

)

1
𝑛

, (∏ √1 − (1 − (𝑎𝜚
𝓊)

q
)
𝜔𝜚q

𝑛

𝜚=1

)

1
𝑛

]
 
 
 

,

[
 
 
 

(∏ √1 − (1 − (dϱ
ℓ)
q
)
𝜔𝜚q

𝑛

𝜚=1

)

1
𝑛

, (∏ √1 − (1 − (dϱ
𝓊)

q
)
𝜔𝜚q

𝑛

𝜚=1

)

1
𝑛

]
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 

 

For 𝔵 = 2 the IVTSFWMSM operator is reduced into IVTSF weighted Bonferroni mean (IVTSFWBM) 

operator: 
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𝐼𝑉𝑇𝑆𝐹𝑊𝑀𝑆𝑀2(𝑃1, 𝑃2, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

√1 − ( ∏ 

1≤𝑖1≤𝑖2≤𝑛

(1 − (∏ (𝑚𝑖
ℓ
𝜚
)
𝑤𝑖𝜚

2

𝜚=1
)

𝑞

))

1

𝐶𝑛
2

𝑞

, √1 − ( ∏ 

1≤𝑖1≤𝑖2≤𝑛

(1 − (∏ (𝑚𝑖
𝓊
𝜚
)
𝑤𝑖𝜚

2

𝜚=1
)

𝑞

))

1

𝐶𝑛
2

𝑞

]
 
 
 
 
 

,

 

[
 
 
 

( ∏ 

1≤𝑖1≤𝑖2≤𝑛

√1 − ∏
𝜚=1

2

(1 − (𝑎𝑖
ℓ
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

1

𝐶𝑛
2

, ( ∏ 

1≤𝑖1≤𝑖2≤𝑛

√1 − ∏
𝜚=1

2

(1 − (𝑎𝑖
𝓊
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

1

𝐶𝑛
2

]
 
 
 

,

[
 
 
 

( ∏ 

1≤𝑖1≤𝑖2≤𝑛

√1 − ∏
𝜚=1

2

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

1

𝐶𝑛
2

, ( ∏ 

1≤𝑖1≤𝑖2≤𝑛

√1 − ∏
𝜚=1

2

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

)
𝑤𝑖𝜚𝑞

)

1

𝐶𝑛
2

]
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 

 

𝐼𝑉𝑇𝑆𝐹𝑊𝑀𝑆𝑀2(𝑃1, 𝑃2, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

(

  
 
√1− ( ∏ 

1≤𝑖1≤𝑖2≤𝑛

(1 − ((𝑚𝑖
ℓ
1
)
𝜔𝑖1(𝑚𝑖

ℓ
2
)
𝜔𝑖1)

𝑞
))

2
𝑛(𝑛−1)𝑞

)

  
 
,

(

  
 
√1−( ∏ 

1≤𝑖1≤𝑖2≤𝑛

(1 − ((𝑚𝑖
𝓊
1
)
𝜔𝑖1(𝑚𝑖

𝓊
2
)
𝜔𝑖1)

𝑞
))

2
𝑛(𝑛−1)𝑞

)

  
 

]
 
 
 
 
 

,

[
 
 
 
 

( ∏ 

1≤𝑖1≤𝑖2≤𝑛

√1− (1 − (𝑎𝑖
ℓ
1
)
𝑞
)
𝜔𝑖1
(1 − (𝑎𝑖

ℓ
2
)
𝑞
)
𝜔𝑖2𝑞

)

2
𝑛(𝑛−1)

, ( ∏ 

1≤𝑖1≤𝑖2≤𝑛

√1− (1 − (𝑎𝑖
𝓊
1
)
𝑞
)
𝜔𝑖1
(1 − (𝑎𝑖

𝓊
2
)
𝑞
)
𝜔𝑖2𝑞

)

2
𝑛(𝑛−1)

]
 
 
 
 

,

[
 
 
 
 

( ∏ 

1≤𝑖1≤𝑖2≤𝑛

√1− (1 − (𝑑𝑖
ℓ
1
)
𝑞
)
𝜔𝑖1
(1 − (𝑑𝑖

ℓ
2
)
𝑞
)
𝜔𝑖2𝑞

)

2
𝑛(𝑛−1)

, ( ∏ 

1≤𝑖1≤𝑖2≤𝑛

√1− (1 − (𝑑𝑖
𝓊
1
)
𝑞
)
𝜔𝑖1
(1 − (𝑑𝑖

𝓊
2
)
𝑞
)
𝜔𝑖2𝑞

)

2
𝑛(𝑛−1)

]
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 

= (𝐼𝑉𝑇𝑆𝐹𝑊𝐵𝑀)(1,1)(𝑃1, 𝑃2, … , 𝑃𝑛)  

For 𝔵 = 𝑛 the IVTSFMSM operator is reduced into an IVTSFWBM operator if (𝑝 = 1, 𝑞 = 0)  

𝐼𝑉𝑇𝑆𝐹𝑊𝑀𝑆𝑀𝜔
𝑛(𝑃1, 𝑃2, … , 𝑃𝑛) = (

⨁
1≤𝑖1≤⋯𝑖𝔵≤𝑛

(⨂𝜚=1
𝔵  𝑃𝑖𝜚)

𝜔𝑖𝜚

𝐶𝑛
𝑛

)

1
𝑛

 

𝐼𝑉𝑇𝑆𝐹𝑊𝑀𝑆𝑀𝜔
𝑛(𝑃1, 𝑃2, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (∏ (𝑚𝑖
ℓ
𝜚
)
𝑤𝑖𝜚

𝑛

𝜚=1
)

𝑞

)

)

 
 

1
𝐶𝑛
𝑛

𝑞

)

 
 
 
 

1
𝑛

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (∏ (𝑚𝑖
𝓊
𝜚
)
𝑤𝑖𝜚

𝑛

𝜚=1
)

𝑞

)

)

 
 

1
𝐶𝑛
𝑛

𝑞

)

 
 
 
 

1
𝑛

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝑛

(1 − (𝑎𝑖
ℓ
𝜚
)
𝑞
)
𝑤𝑖𝜚

)

)

 
 

1
𝐶𝑛
𝑛

)

 
 
 

1
𝑛

𝑞

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝑛

(1 − (𝑎𝑖
𝓊
𝜚
)
𝑞
)
𝑤𝑖𝜚

)

)

 
 

1
𝐶𝑛
𝑛

)

 
 
 

1
𝑛

𝑞

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝑛

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞
)
𝑤𝑖𝜚

)

)

 
 

1
𝐶𝑛
𝑛

)

 
 
 

1
𝑛

𝑞

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ∏
𝜚=1

𝑛

(1 − (𝑑𝑖
𝓊
𝜚
)
𝑞
)
𝑤𝑖𝜚

)

)

 
 

1
𝐶𝑛
𝑛

)

 
 
 

1
𝑛

𝑞

]
 
 
 
 
 
 
 

)
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𝐼𝑉𝑇𝑆𝐹𝑊𝑀𝑆𝑀𝜔
𝑛(𝑃1, 𝑃2, … , 𝑃𝑛) =

(

 
 
 
 
 
 
 
 [( ∏

𝜚=1

𝑛

(𝑚𝑖
ℓ
𝜚
)
𝜔𝑖𝜚

)

1
𝑛

, ( ∏
𝜚=1

𝑛

(𝑚𝑖
𝓊
𝜚
)
𝜔𝑖𝜚
)

1
𝑛

] ,

[√1 − ∏
𝜚=1

𝑛

((1 − (𝑎𝑖
ℓ
𝜚
)
𝑞

)
𝜔𝑖𝜚

)

1
𝑛

𝑞

, √1 − ∏
𝜚=1

𝑛

((1 − (𝑎𝑖
𝓊
𝜚
)
𝑞

)
𝜔𝑖𝜚

)

1
𝑛
,

𝑞

]

[√1 − ∏
𝜚=1

𝑛

((1 − (𝑑𝑖
ℓ
𝜚
)
𝑞

)
𝜔𝑖𝜚

)

1
𝑛

𝑞

, √1 − ∏
𝜚=1

𝑛

((1 − (𝑑𝑖
𝓊
𝜚
)
𝑞

)
𝜔𝑖𝜚

)

1
𝑛

𝑞

]

)

 
 
 
 
 
 
 
 

 

If we take 𝑖𝜚 = 𝜚 then 

𝐼𝑉𝑇𝑆𝐹𝑊𝑀𝑆𝑀𝜔
𝑛(𝑃1, 𝑃2, … , 𝑃𝑛) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 

(∏(𝑚𝜚
ℓ)
𝜔𝜚

𝑛

𝜚=1

)

1
𝑛

, (∏(𝑚𝜚
𝓊)

𝜔𝜚

𝑛

𝜚=1

)

1
𝑛

]
 
 
 

,

[
 
 
 
 
 

√1 − (∏((1 − (𝑎𝜚
ℓ)
𝑞
)
𝜔𝜚
)

𝑛

𝜚=1

)

1
𝑛

,

𝑞

√1 − (∏((1 − (𝑎𝜚
𝓊)

𝑞
)
𝜔𝜚
)

𝑛

𝜚=1

)

1
𝑛

,

𝑞

]
 
 
 
 
 

[
 
 
 
 
 

√1 − (∏((1 − (𝑑𝜚
ℓ)
𝑞
)
𝜔𝜚
)

𝑛

𝜚=1

)

1
𝑛

,

𝑞

√1 − (∏((1 − (𝑑𝜚
𝓊)

𝑞
)
𝜔𝜚
)

𝑛

𝜚=1

)

1
𝑛𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

= 𝐼𝑉𝑇𝑆𝐹𝑊𝐵𝑀(1,0)(𝑃1, 𝑃2, … , 𝑃𝑛) 
Example: 2 Let 𝑃1 = ([0.3,0.31], [0.5,0.51], [0.6,0.61]), 𝑃2 = ([0.4,0.41], [0.6,0.61], [0.7,0.71]), 𝑃3 =

([0.5,0.51], [0.4,0.41], [0.7,0.71]), 𝑃4 = ([0.6,0.61], [0.5,0.51], [0.6,0.61]) be four IVTSFNs. Now use the 

IVTSFWMSM operator to aggregate these four IVTSFNs. Here we take 𝔵 = 2, 𝑞 = 3 that fulfill our 

requirements and 𝜔 = (0.3,0.1,0.4,0.2) be the weight vector of four IVTSFNs. 
(𝑃1)

0.3⊗ (𝑃2)
0.1

= (
[0.60.3 × 0.60.1, 0.610.3 × 0.610.1], [√1 − (1 − 0.53)0.3 × (1 − 0.63)0.1

3
, √1 − (1 − 0.513)0.3 × (1 − 0.613)0.1
3

] ,

[√1 − (1 − 0.83)0.3 × (1 − 0.23)0.1
3

, √1 − (1 − 0.813)0.3 × (1 − 0.213)0.1
3

]
)

= ([0.81,0.82], [0.39,0.40], [0.57,0.59]) 
(𝑃1)

0.3⊗ (𝑃3)
0.4

= (
[0.60.3 × 0.40.4, 0.610.3 × 0.410.4], [√1 − (1 − 0.53)0.3 × (1 − 0.43)0.4

3
, √1 − (1 − 0.513)0.3 × (1 − 0.413)0.4
3

] ,

[√1 − (1 − 0.83)0.3 × (1 − 0.33)0.4
3

, √1 − (1 − 0.813)0.3 × (1 − 0.313)0.4
3

]
)

= ([0.71,0.72], [0.40,0.41], [0.58,0.60]) 
(𝑃1)

0.3⊗ (𝑃4)
.0.2

= (
[0.60.3 × 0.50.2, 0.610.3 × 0.510.2], [√1 − (1 − 0.53)0.3 × (1 − 0.73)0.2

3
, √1 − (1 − 0.513)0.3 × (1 − 0.713)0.2
3

] ,

[√1 − (1 − 0.83)0.3 × (1 − 0.43)0.2
3

, √1 − (1 − 0.813)0.3 × (1 − 0.413)0.2
3

]
)

= ([0.74,0.75], [0.48,0.50], [0.58,0.60]) 
(𝑃2)

0.1⊗ (𝑃3)
0.4

= (
[0.60.1 × 0.40.4, 0.610.1 × 0.410.4], [√1 − (1 − 0.63)0.1 × (1 − 0.43)0.4

3
, √1 − (1 − 0.613)0.1 × (1 − 0.413)0.4
3

] ,

[√1 − (1 − 0.23)0.1 × (1 − 0.33)0.4
3

, √1 − (1 − 0.213)0.1 × (1 − 0.313)0.4
3

]
)

= ([0.65,0.66], [0.36,0.38], [0.22,0.24]) 
(𝑃2)

0.1⊗ (𝑃4)
0.2

= (
[0.60.1 × 0.50.2, 0.610.1 × 0.510.2], [√1 − (1 − 0.63)0.1 × (1 − 0.73)0.2

3
, √1 − (1 − 0.613)0.1 × (1 − 0.713)0.2
3

] ,

[√1 − (1 − 0.23)0.1 × (1 − 0.43)0.2
3

, √1 − (1 − 0.213)0.1 × (1 − 0.413)0.2
3

]
)

= ([0.82,0.83], [0.46,0.48], [0.24,0.26]) 
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(𝑃3)
0.4⊗ (𝑃4)

0.2

= (
[0.40.4 × 0.50.2, 0.410.4 × 0.510.2], [√1 − (1 − 0.43)0.4 × (1 − 0.73)0.2

3
, √1 − (1 − 0.413)0.4 × (1 − 0.713)0.2
3

] ,

[√1 − (1 − 0.33)0.4 × (1 − 0.43)0.2
3

, √1 − (1 − 0.313)0.4 × (1 − 0.413)0.2
3

]
)

= ([0.60,0.61], [0.47,0.48], [0.28,0.30]) 
Using the formula  

𝑇𝑆𝐹𝑊𝑀𝑆𝑀𝜔
2 (𝑃1, 𝑃2, … , 𝑃𝑛) = (

⨁
1≤𝑖1≤⋯𝑖𝔵≤𝑛

(⨂𝜚=1
𝔵  𝑃𝑖𝜚)

𝜔

𝐶𝑛
𝔵 )

1
𝔵

= (

⨁
1≤𝑖1≤⋯ 𝑖𝔵≤𝑛

(⨂𝜚=1
𝔵  𝑃𝑖𝜚)

𝜔

𝐶4
2 )

1
2

= ([0.35,0.36], [0.033,0.040], [0.42,0.43]) 

4. IVTSFDMSM and IVTSFWDMSM Operators 

In this study, we combine the idea of DMSM and WDMSM operators with TSFSs to investigate the idea 

of IVTSFDMSM and IVTSFWDMSM operators and discussed their different properties. 

Definition 8: Let 𝑃𝜚 = (𝑚𝜚 , 𝑎𝜚 , 𝑑𝜚). Here 𝑚𝜚 = (𝑚𝜚
ℓ, 𝑚𝜚

𝓊), 𝑎𝜚 = (𝑎𝜚
ℓ, 𝑎𝜚

𝓊) and 𝑑𝜚 = (𝑑𝜚
ℓ, 𝑑𝜚

𝓊) be the 

collection of IVTSFNs. Then the IVTSFDMSM is elaborated by: 

𝐼𝑉𝑇𝑆𝐹𝐷𝑀𝑆𝑀𝐾((𝑃1, 𝑃2, … , 𝑃𝑛)) =
1

𝔵
( ⨁
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

( ⨂
𝜚=1

𝔵

𝑃𝑖𝜚)

1
𝐶𝑛
𝔵

) 

Where binomial coefficient is denoted by  𝐶𝑛
𝔵  with (𝑖1, 𝑖2, … , 𝑖𝔵) all the k-tuple combinations of 

(1,2, … , 𝑛). 

Theorem 3: Let 𝑃ϱ = (𝑚𝜚 , 𝑎𝜚 , 𝑑𝜚) be the collection of IVTSFNs. Here 𝑚𝜚 = (𝑚𝜚
ℓ , 𝑚𝜚

𝓊), 𝑎𝜚 =

(𝑎𝜚
ℓ , 𝑎𝜚

𝓊) and 𝑑𝜚 = (𝑑𝜚
ℓ, 𝑑𝜚

𝓊). Then by using the idea of IVTSFDMSM operators we obtain: 

𝐼𝑉𝑇𝑆𝐹𝐷𝑀𝑆𝑀(𝑃1, 𝑃2, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
1 − ∏ 

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 −∏(1 − (𝑚𝑖
ℓ
𝜚
)
𝑞

)

𝔵

𝜚=1

)

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
 

1 −

(

 
 
1 − ∏ 

1≤𝑖1≤ …
<𝑖𝔵≤𝑛

(1 −∏(1 − (𝑚𝑖
𝓊
𝜚
)
𝑞

)

𝔵

𝜚=1

)

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

]
 
 
 
 
 
 

,

 

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑎𝑖
ℓ
𝜚
)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑎𝑖
𝓊
𝜚
)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

,

 

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑑𝑖
ℓ
𝜚
)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑑𝑖
𝓊
𝜚
)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Proof: By using Definition (8) we obtain: 

⨂
𝜚=1

𝔵

𝑃𝑖𝜚 =

(

  
 [√1 − ∏

𝜚=1

𝔵

(1 − (𝑚𝑖
ℓ
𝜚
)
𝑞

)
𝑞

, √1 − ∏
𝜚=1

𝔵

(1 − (𝑚𝑖
𝓊
𝜚
)
𝑞

)
𝑞

] ,

[ ∏
𝜚=1

𝔵

𝑎𝑖
ℓ
𝜚
, ∏
𝜚=1

𝔵

𝑎𝑖
𝓊
𝜚
] , [ ∏

𝜚=1

𝔵

𝑑𝑖
ℓ
𝜚
, ∏
𝜚=1

𝔵

𝑑𝑖
𝓊
𝜚
]

)
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( ⨂
𝜚=1

𝔵

𝑃𝑖𝜚)

1
𝐶𝑛
𝔵

=

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 

(√1 − ∏
𝜚=1

𝔵

(1 − (𝑚𝑖
ℓ
𝜚
)
𝑞

)
𝑞

)

1
𝐶𝑛
𝔵

, (√1 − ∏
𝜚=1

𝔵

(1 − (𝑚𝑖
ℓ
𝜚
)
𝑞

)
𝑞

)

1
𝐶𝑛
𝔵

]
 
 
 

,

[
 
 
 
 
√1 − (1 − ( ∏

𝜚=1

𝔵

𝑎𝑖
ℓ
𝜚
)

𝑞

 )

1
𝐶𝑛
𝔵𝑞

, √1 − (1 − ( ∏
𝜚=1

𝔵

𝑎𝑖
𝓊
𝜚
)

𝑞

 )

1
𝐶𝑛
𝔵𝑞

]
 
 
 
 

 ,

[
 
 
 
 
√1 − (1 − ( ∏

𝜚=1

𝔵

𝑑𝑖
ℓ
𝜚
)

𝑞

 )

1
𝐶𝑛
𝔵𝑞

, √1 − (1 − ( ∏
𝜚=1

𝔵

𝑑𝑖
𝓊
𝜚
)

𝑞

 )

1
𝐶𝑛
𝔵𝑞

]
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 

 

⨂
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

( ⨂
𝜚=1

𝔵

𝑃𝑖𝜚)

1
𝐶𝑛
𝔵

=

(

 
 
 
 
 
 
 
 
 
 

[
 
 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(√1 − ∏
𝜚=1

𝔵

(1 − (𝑚𝑖
ℓ
𝜚
)
𝑞

)
𝑞

)

1
𝐶𝑛
𝔵

, ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(√1 − ∏
𝜚=1

𝔵

(1 − (𝑚𝑖
𝓊
𝜚
)
𝑞

)
𝑞

)

1
𝐶𝑛
𝔵

]
 
 
 

,

[
 
 
 
√1 − ∏

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑎𝑖
ℓ
𝜚
)

𝑞

 )

1
𝐶𝑛
𝔵𝑞

, √1 − ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑎𝑖
𝓊
𝜚
)

𝑞

 )

1
𝐶𝑛
𝔵𝑞

]
 
 
 

  ,

[
 
 
 
√1 − ∏

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑑𝑖
ℓ
𝜚
)

𝑞

 )

1
𝐶𝑛
𝔵𝑞

, √1 − ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑑𝑖
𝓊
𝜚
)

𝑞

 )

1
𝐶𝑛
𝔵𝑞

]
 
 
 

)

 
 
 
 
 
 
 
 
 
 

 

𝐼𝑉𝑇𝑆𝐹𝐷𝑀𝑆𝑀(𝑃1, 𝑃2, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
1 − ∏

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 −∏(1 − (𝑚𝑖
ℓ
𝜚
)
𝑞

)

𝔵

𝜚=1

)

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
 

1 −

(

 
 
1 − ∏

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 −∏(1 − (𝑚𝑖
𝓊
𝜚
)
𝑞

)

𝔵

𝜚=1

)

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

]
 
 
 
 
 
 

,

[
 
 
 
 
 
 

(

  
 
√1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑎𝑖
ℓ
𝜚
)

𝑞

)

)

 

1
𝐶𝑛
𝔵

𝑞

)

  
 

1
𝔵

,

(

  
 
√1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑎𝑖
𝓊
𝜚
)

𝑞

)

)

 

1
𝐶𝑛
𝔵

𝑞

)

  
 

1
𝔵

]
 
 
 
 
 
 

,

[
 
 
 
 
 
 

(

  
 
√1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑑𝑖
ℓ
𝜚
)

𝑞

)

)

 

1
𝐶𝑛
𝔵

𝑞

)

  
 

1
𝔵

,

(

  
 
√1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

𝑑𝑖
𝓊
𝜚
)

𝑞

)

)

 

1
𝐶𝑛
𝔵

𝑞

)

  
 

1
𝔵

]
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Moreover, the ideas of idempotency, monotonicity, commutations, and boundedness are developed. 

Property 5: Let 𝑃𝜚 = (𝑚𝜚, 𝑎𝜚 , 𝑑𝜚) be the collection of IVTSFNs. Here 𝑚𝜚 = (𝑚𝜚
ℓ, 𝑚𝜚

𝓊), 𝑎𝜚 =

(𝑎𝜚
ℓ , 𝑎𝜚

𝓊) and 𝑑𝜚 = (𝑑𝜚
ℓ, 𝑑𝜚

𝓊). If 𝑃𝜚 = 𝑃 then: 

𝐼𝑉𝑇𝑆𝐹𝐷𝑀𝑆𝑀𝔵(𝑃1 , 𝑃2, 𝑃3, … , 𝑃𝑛) = 𝑃. 

Property 6: Let 𝑃𝜚 and 𝑃�́� be the collection of IVTSFNs: if [𝑚𝜚
ℓ, 𝑚𝜚

𝓊] ≥  [𝑚𝜚́
ℓ, 𝑚𝜚́

𝓊], [𝑎𝜚
ℓ, 𝑎𝜚

𝓊] ≤

 [𝑎�́�
ℓ, 𝑎�́�

𝓊] , [𝑑𝜚
ℓ, 𝑑𝜚

𝓊] ≤  [𝑑�́�
ℓ
, 𝑑�́�

𝓊
], for all 𝜚. Then: 

𝐼𝑉𝑇𝑆𝐹𝐷𝑀𝑆𝑀𝔵(𝑃1, 𝑃2, … , 𝑃𝑛) ≥ 𝐼𝑉𝑇𝑆𝐹𝐷𝑀𝑆𝑀𝔵(𝑃1́, 𝑃2́, … , 𝑃�́�). 

Property 7: Let 𝑃𝜚 and 𝑃�́� be the collection of two IVTSFNs. Then: 

𝐼𝑉𝑇𝑆𝐹𝐷𝑀𝑆𝑀𝔵(𝑃1, 𝑃2, … , 𝑃𝑛) = 𝐼𝑉𝑇𝑆𝐹𝐷𝑀𝑆𝑀𝔵(𝑃1́, 𝑃2́, … , 𝑃�́�). 
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Property 8: Let 𝑃𝜚 be the collection of IVTSFNs with 

𝑃− = min 𝑃𝜚 = ([𝑚𝑖𝑛𝑚𝜚
ℓ , 𝑚𝑖𝑛𝑚𝜚

𝓊], [max𝑎𝜚
ℓ , max 𝑎𝜚

𝓊], [max 𝑑𝜚
ℓ , max 𝑑𝜚

𝓊]) 

𝑃− = max𝑃𝜚 = ([max𝑚𝜚
ℓ , max𝑚𝜚

𝓊], [𝑚𝑖𝑛 𝑎𝜚
ℓ , 𝑚𝑖𝑛 𝑎𝜚

𝓊], [𝑚𝑖𝑛 𝑑𝜚
ℓ , 𝑚𝑖𝑛 𝑑𝜚

𝓊]) 

Then 

𝑃− ≤  𝐼𝑉𝑇𝑆𝐹𝐷𝑀𝑆𝑀(𝑃1, 𝑃2, 𝑃3…𝑃𝑛) ≤ 𝑃+ 
Proof: By using property 1 and property 2, we get: 

𝐼𝑉𝑇𝑆𝐹𝐷𝑀𝑆𝑀(𝔵)(𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛) ≥  𝐼𝑉𝑇𝑆𝐹𝐷𝑀𝑆𝑀
(𝔵)(𝑃−, 𝑃−, … , 𝑃−) = 𝑃− 

𝐼𝑉𝑇𝑆𝐹𝐷𝑀𝑆𝑀(𝔵)(𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛) ≤  𝐼𝑉𝑇𝑆𝐹𝐷𝑀𝑆𝑀(𝔵)(𝑃+, 𝑃+, … , 𝑃+) = 𝑃+ 

Definition 9: Let 𝑃ϱ = (𝑚𝜚, 𝑎𝜚 , 𝑑𝜚) be the collection of IVTSFNs. Here 𝑚𝜚 = (𝑚𝜚
ℓ , 𝑚𝜚

𝓊), 𝑎𝜚 =

(𝑎𝜚
ℓ , 𝑎𝜚

𝓊) and 𝑑𝜚 = (𝑑𝜚
ℓ, 𝑑𝜚

𝓊). Then the IVTSFWDMSM operator is elaborated by:  

𝐼𝑉𝑇𝑆𝐹𝑊𝐷𝑀𝑆𝑀(𝑃1, 𝑃2, … , 𝑃𝑛) =
1

𝔵
( ⨁
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

( ⨂
𝜚=1

𝔵

(𝜔𝑖𝜚
⨂𝑃𝑖𝜚))

1
𝐶𝑛
𝔵

) 

Where Cn
k represented by a binomial coefficient and (𝑖1, 𝑖2, … , 𝑖𝔵) represent the k-tuple combination of 

(1,2, … , 𝑛) and 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)
𝛵 be the weight vector of 𝑃𝜚 and 𝜔𝜚 > 0,∑ 𝜔𝜚 = 1𝑛

𝜚=1 . 

Theorem 4: Let 𝑝𝜚 = (𝑚𝜚, 𝑎𝜚 , 𝑑𝜚) be the collection of IVTSFNs. Here 𝑚𝜚 = (𝑚𝜚
ℓ, 𝑚𝜚

𝓊), 𝑎𝜚 =

(𝑎𝜚
ℓ , 𝑎𝜚

𝓊) and 𝑑𝜚 = (𝑑𝜚
ℓ, 𝑑𝜚

𝓊). Then by using the idea of IVTSFWDMSM operators, we obtain: 

𝐼𝑉𝑇𝑆𝐹𝑊𝐷𝑀𝑆𝑀𝔵(𝑃1, 𝑃2, 𝑃3, … ,  𝑃𝑛) = (

⨁
1≤𝑖1≤⋯𝑖𝔵≤𝑛

(⨂𝜚=1
𝔵  (𝑃𝑖𝜚)

𝜔𝑖𝜚
)

𝐶𝑛
𝔵 )

1
𝔵

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
1 − ∏ 

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 −∏(1 − (𝑚𝑖
ℓ
𝜚
)
𝑞
)

𝔵

𝜚=1

𝑤𝑖𝜚

)

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
 

1 −

(

 
 
1 − ∏ 

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 −∏(1− (𝑚𝑖
𝓊
𝜚
)
𝑞
)

𝔵

𝜚=1

𝑤𝑖𝜚

)

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

]
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑎𝑖
ℓ
𝜚
)
𝜔𝑖𝜚
)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑎𝑖
𝓊
𝜚
)
𝜔𝑖𝜚
)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑑𝑖
ℓ
𝜚
)
𝜔𝑖𝜚
)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑑𝑖
𝓊
𝜚
)
𝜔𝑖𝜚
)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Proof: By using Definition (9) we obtain: 

⨂
𝜚=1

𝔵

(𝜔𝑖𝜚
⨂𝑃𝑖𝜚) =  

(

 
 
 
 
 

[
 
 
 
 

√
1 − ∏ 

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (𝑚𝑖
ℓ
𝜚
)
𝑞

)
𝜔𝑖𝜚𝑞 ,

√
1 − ∏ 

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (𝑚𝑖
𝓊
𝜚
)
𝑞

)
𝜔𝑖𝜚𝑞

]
 
 
 
 

,

[ ∏
𝜚=1

𝔵

(𝑎𝑖
ℓ
𝜚
)
𝜔𝑖𝜚

, ∏
𝜚=1

𝔵

(𝑎𝑖
𝓊
𝜚
)
𝜔𝑖𝜚

] , [ ∏
𝜚=1

𝔵

(𝑑𝑖
ℓ
𝜚
)
𝜔𝑖𝜚

, ∏
𝜚=1

𝔵

(𝑑𝑖
𝓊
𝜚
)
𝜔𝑖𝜚

]
)
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( ⨂
𝜚=1

𝔵

(𝜔𝑖𝜚
⨂𝑃𝑖𝜚))

1
𝐶𝑛
𝔵

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

(

 
 

√
1 − ∏ 

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (𝑚𝑖
ℓ
𝜚
)
𝑞

)
𝜔𝑖𝜚𝑞

)

 
 

1
𝐶𝑛
𝔵

,

(

 
 

√
1 − ∏ 

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − (𝑚𝑖
𝓊
𝜚
)
𝑞

)
𝜔𝑖𝜚𝑞

)

 
 

1
𝐶𝑛
𝔵

]
 
 
 
 
 

,

[
 
 
 
 
√1 − (1 − ( ∏

𝜚=1

𝔵

(𝑎𝑖
ℓ
𝜚
)
𝜔𝑖𝜚

)

𝑞

)

1
𝐶𝑛
𝔵𝑞

, √1 − (1 − ( ∏
𝜚=1

𝔵

(𝑎𝑖
𝓊
𝜚
)
𝜔𝑖𝜚

)

𝑞

)

1
𝐶𝑛
𝔵𝑞

]
 
 
 
 

,

[
 
 
 
 
√1 − (1 − ( ∏

𝜚=1

𝔵

(𝑑𝑖
ℓ
𝜚
)
𝜔𝑖𝜚
)

𝑞

)

1
𝐶𝑛
𝔵𝑞

, √1 − (1 − ( ∏
𝜚=1

𝔵

(𝑑𝑖
𝓊
𝜚
)
𝜔𝑖𝜚

)

𝑞

)

1
𝐶𝑛
𝔵𝑞

]
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

⨂
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

( ⨂
𝜚=1

𝔵

(𝜔𝑖𝜚
⨂𝑃𝑖𝜚))

1
𝐶𝑛
𝔵

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 (

 
 

√
1 − ∏ 

1≤𝑖1≤,,,
<𝑖𝔵≤𝑛

(1 − (𝑚𝑖
ℓ
𝜚
)
𝑞

)
𝜔𝑖𝜚𝑞

)

 
 

1
𝐶𝑛
𝔵

, ∏  
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 (

 
 

√
1 − ∏ 

1≤𝑖1≤,,,
<𝑖𝔵≤𝑛

(1 − (𝑚𝑖
𝓊
𝜚
)
𝑞

)
𝜔𝑖𝜚𝑞

)

 
 

1
𝐶𝑛
𝔵

]
 
 
 
 
 

,

[
 
 
 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑎𝑖
ℓ
𝜚
)
𝜔𝑖𝜚

)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

,

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑎𝑖
𝓊
𝜚
)
𝜔𝑖𝜚

)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

]
 
 
 
 
 
 

,

[
 
 
 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑑𝑖
ℓ
𝜚
)
𝜔𝑖𝜚

)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

,

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑑𝑖
𝓊
𝜚
)
𝜔𝑖𝜚

)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

]
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝐼𝑉𝑇𝑆𝐹𝑊𝐷𝑀𝑆𝑀𝔵(𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
1 − ∏ 

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 −∏(1 − (𝑚𝑖
ℓ
𝜚
)
𝑞
)
𝜔𝑖𝜚

𝔵

𝜚=1

)

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
 

1 −

(

 
 
1 − ∏ 

1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 −∏(1− (𝑚𝑖
𝓊
𝜚
)
𝑞
)
𝜔𝑖𝜚

𝔵

𝜚=1

)

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

]
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑎𝑖
ℓ
𝜚
)
𝜔𝑖𝜚
)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑎𝑖
𝓊
𝜚
)
𝜔𝑖𝜚
)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑑𝑖
ℓ
𝜚
)
𝜔𝑖𝜚
)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ 
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(𝑑𝑖
𝓊
𝜚
)
𝜔𝑖𝜚
)

𝑞

)

)

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

)
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5. A Study of the Consequences of the IVTSFMSM Operator 

In this section, some consequences of the MSM operators of IVTSFSs are discussed given some 

restrictions that show the usefulness and generalization of the proposed work. 

Consider the IVTSFMSM operator.  
𝐼𝑉𝑇𝑆𝐹𝑀𝑆𝑀 (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ (1− (∏𝑚𝑖

ℓ
𝜚

𝔵

𝜚=1

 )

𝑞

)
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 )

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ (1− (∏𝑚𝑖

𝓊
𝜚

𝔵

𝜚=1

 )

𝑞

)
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 )

 
 

1
𝐶𝑛
𝔵

𝑞

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ (1− ( ∏(1 − (𝑎𝑖

ℓ
𝜚
)
𝑞
)

𝔵

𝜚=1

))
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 )

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 
∏ (1−( ∏(1 − (𝑎𝑖

𝓊
𝜚
)
𝑞
)

𝔵

𝜚=1

))
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 )

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
𝑞
)))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚
𝓊)

𝑞
)))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

𝑞

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1. For 𝓂ℓ = 𝓂𝓊 = 𝓂,𝑎ℓ = 𝑎𝓊 = 𝑎, and 𝑑𝓊 = 𝑑ℓ = 𝑑 the IVTSFMSM operator is reduced into MSM 

operators of TSFMSM. 

TSFMSM (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 

(

  
 
√1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

  𝑚𝑖𝜚
 )

𝑞

)

)

 

1
𝐶𝑛
𝔵

𝑞

)

  
 

1
𝔵

,

√
  
  
  
  
  
 

1 −

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚)
𝑞

)))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

√
  
  
  
  
  
 

1 −

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚)
𝑞

)))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

)

 
 
 
 
 
 
 
 
 

 

2. For = 2, the IVTSFMSM operator is reduced into MSM operators of the IVSF environment. 
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𝐼𝑉𝑆𝐹𝑀𝑆𝑀 (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ (1− ( ∏𝑚𝑖

ℓ
𝜚

𝔵

𝜚=1

 )

2

)
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 )

 
 

1
𝐶𝑛
𝔵

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ (1− ( ∏𝑚𝑖

𝓊
𝜚

𝔵

𝜚=1

 )

2

)
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 )

 
 

1
𝐶𝑛
𝔵

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑎𝑖
ℓ
𝜚
)
2
)))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑎𝑖
𝓊
𝜚
)
2
)))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ 
𝜚
)
2
)))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
2
)))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3. For 𝑞 = 2 and 𝑎ℓ = 𝑎𝓊 = 𝑎 = 0 the IVTSFMSM operator is reduced into MSM operators of the 

IVPyF environment. 
𝐼𝑉𝑃𝑦𝐹𝑀𝑆𝑀 (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

  𝑚𝑖
ℓ
𝜚
 )

2

)

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

  𝑚𝑖
𝓊
𝜚
 )

2

)

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
)
2
)))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
)
2
)))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

4. For 𝑞 = 1, the IVTSFMSM operator is reduced into MSM operators of the IVPF set. 
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𝐼𝑉𝑃𝐹𝑀𝑆𝑀 (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ (1 − ( ∏𝑚𝑖

ℓ
𝜚

𝔵

=1

 ))
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 )

 
 

1
𝐶𝑛
𝔵

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 
∏ (1 − ( ∏𝑚𝑖

𝓊
𝜚

𝔵

=1

 ))
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛 )

 
 

1
𝐶𝑛
𝔵

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑎𝑖
ℓ
𝜚
))))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑎𝑖
𝓊
𝜚
))))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
))))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
))))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5. For 𝑞 = 1 and 𝑎ℓ = 𝑎𝓊 = 𝑎 = 0, the IVTSFMSM operator is reduced into MSM operators of IVIF 

environment. 
𝐼𝑉𝐼𝐹𝑀𝑆𝑀 (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

  𝑚𝑖
ℓ
𝜚
 ))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

  𝑚𝑖
𝓊
𝜚
 ))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
))))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
))))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

6. For 𝑞 = 1 and 𝓂ℓ = 𝓂𝓊 = 𝓂 ,𝑎ℓ = 𝑎𝓊 = 𝑎 = 0 and 𝑑ℓ = 𝑑𝓊 = 𝑑 the IVTSFMSM operator is 

reduced into MSM operators of IFS. 

𝐼𝐹𝑀𝑆𝑀 (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)

=

(

 
 
 
 

(

  
 
√1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

 𝑚𝑖𝜚
 ))

)

 

1
𝐶𝑛
𝔵

)

  
 

1
𝔵

,

√
  
  
  
  
  
 

1 −

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚)
𝑞

)))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

)

 
 
 
 

 

7. For 𝑞 = 2 and 𝓂ℓ = 𝓂𝓊 = 𝓂, 𝑎ℓ = 𝑎𝓊 = 𝑎, 𝑑ℓ = 𝑑𝓊 = 𝑑 the IVTSFMSM operator is reduced into 

MSM operators of SFSs. 
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𝑆𝐹𝑀𝑆𝑀 (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

  𝑚𝑖𝜚)

2

)

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 
 

1
𝔵

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚)
2
)))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚)
2
)))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

)

 
 
 
 
 
 
 
 
 
 
 

 

8. For 𝓂ℓ = 𝓂𝓊 = 𝓂, 𝑎ℓ = 𝑎𝓊 = 𝑎 = 0, 𝑑ℓ = 𝑑𝓊 = 𝑑 the IVTSFMSM operator is reduced into MSM 

operators of q-ROPFS. 

𝑄𝑅𝑂𝑃𝐹𝑀𝑆𝑀 (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛) =

(

 
 
 
 
 
 
 
 
 

(

  
 
√1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

  𝑚𝑖𝜚
 )

𝑞

)

)

 

1
𝐶𝑛
𝔵

𝑞

)

  
 

1
𝔵

,

√
  
  
  
  
  
 

1 −

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚)
𝑞

)))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

𝑞

)

 
 
 
 
 
 
 
 
 

 

9. For  𝑎ℓ = 𝑎𝓊 = 𝑎 = 0, the IVTSFMSM operator is reduced into MSM operators of IV q-ROPFS 
𝐼𝑉𝑄𝑅𝑂𝑃𝐹𝑀𝑆𝑀 (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

  𝑚𝑖
ℓ
𝜚
 ))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 
 

1
𝔵

,

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

  𝑚𝑖
𝓊 
𝜚
 ))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 
 

1
𝔵

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
ℓ
𝜚
))))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖
𝓊
𝜚
))))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

10. For 𝑞 = 1 and 𝓂ℓ = 𝓂𝓊 = 𝓂, 𝑎ℓ = 𝑎𝓊 = 𝑎 and 𝑑ℓ = 𝑑𝓊 = 𝑑 the IVTSFMSM operator is reduced 

into MSM operators of PFSs. 
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𝑃𝐹𝑀𝑆𝑀 (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)

=

(

 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 

√
  
  
  
  
  
 

1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

 𝑚𝑖𝜚 ))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 
 

1
𝔵

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑎𝑖𝜚)
𝑞
)))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

,

√
  
  
  
  
  
  
 

1 −

(

 
 
 
1 −

(

 
 

∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚)
𝑞
)))

)

 
 

1
𝐶𝑛
𝔵

)

 
 
 

1
𝔵

)

 
 
 
 
 
 
 
 
 
 
 

 

11. For 𝑞 = 2 and 𝓂ℓ = 𝓂𝓊 = 𝓂, 𝑎ℓ = 𝑎𝓊 = 𝑎 = 0,  𝑑ℓ = 𝑑𝓊 = 𝑑 the IVTSFMSM operator is 

reduced into MSM operators of PyFSs. 

𝑃𝑦𝐹𝑀𝑆𝑀 (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛) =

(

 
 
 
 
 
 
 
 
 

(

  
 
√1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

  𝑚𝑖𝜚
)

2

)

)

 

1
𝐶𝑛
𝔵

)

  
 

1
𝔵

,

,

√
  
  
  
  
  
 

1 −

(

 
 
1 −

(

 ∏
1≤𝑖1≤⋯
<𝑖𝔵≤𝑛

(1 − ( ∏
𝜚=1

𝔵

(1 − (𝑑𝑖𝜚)
2

)))

)

 

1
𝐶𝑛
𝔵

)

 
 

1
𝔵

)

 
 
 
 
 
 
 
 
 

 

6. MADM Procedure Using IVTSFMSM Operators 

In this investigation work, we develop a MADM procedure by using the idea of IVTSFMS, 

IVTSFWMSM, IVTSFDMSM, and IVTSFWDMSM operators based on IVTSFNs. To resolve the above 

types of issues, we choose the collection of alternative and their attributes whose expressions are summarized 

as 𝔇 = {𝔇1, 𝔇2, … ,𝔇𝑛} denote the family of alternatives and Ḡ = {Ḡ1, Ḡ2, … , Ḡ𝑚} denote the family of 

attributes. Moreover, the terms 𝜔 = {𝜔1, 𝜔2, …𝜔𝑛} represent the weight vector for the discussed attributes 

with a rule that is 𝜔𝜚 ∈ [0,1], 𝜚 = 1,2, …𝑛 and ∑ 𝜔𝜚
𝑛
𝜚=1 . The information about the alternatives is taken in the 

form of IVTSFNs which are then subjected to the process of aggregation by using the proposed MSM 

operators. Complete steps of the MADM algorithm are given as follows: 

Step 1: Develop a decision matrix for every alternative described by an IVTSFN under some attribute. 

Step 2: To change cost type attributes to benefit type, the decision matrix obtained in Step 1 is 

normalized using the following equations. 

𝑡𝑖𝜚 = (�̂�𝑖𝜚 , �̂�𝑖𝜚 , �̂�𝑖𝜚) = {
(𝑚𝑖𝜚 , 𝑎𝑖𝜚 , 𝑑𝑖𝜚) 𝑓𝑜𝑟 𝑏𝑒𝑛𝑓𝑖𝑡𝑠

(𝑑𝑖𝜚 , 𝑎𝑖𝜚 , 𝑚𝑖𝜚) 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡
 

Step 3: After normalization in Step 3, using the IVTSFMSM, IVTSFWMSM, IVTSFDMSM, and 

IVTSFWDMSM operators, we aggregate the IVTSF information. 

Step 4: The aggregated information is analyzed utilizing a score function for ranking purposes. 

Step 5: Based on the rules discussed in Definition 2, all the alternatives are ranked to obtain the optimum 

results. 

To demonstrate the above-discussed steps, we present an example as follows: 

Example 3: An educational institute wants to fulfill its vacant posts. It made a selection policy for the 

recruitment of the applicants.  Four groups of alternatives (applicants) are {𝔇1, 𝔇2, 𝔇3, 𝔇4, 𝔇5} selection of 

candidates according to the following four attributes defined by the competent authority {Ḡ1, Ḡ2, Ḡ3, Ḡ4}. 
We adapt the same example to apply the MSM operators proposed in this paper where the information is 

based on IVTSFNs. We resolve a MAGDM problem for the selection of the most suitable candidates for their 

posts. 

Ḡ1: Technical achievement. 
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Ḡ2: Potential market and market risk. 

Ḡ3: Financial benefits. 

Ḡ4: Development of science and employment creation. 

For this, we consider the weight vector such as 𝜔𝜚 = (0.3,0.1,0.4,0.2)𝑇. Now, we present a stepwise 

computation of the above-discussed MADM problem using the algorithm discussed earlier in this section.  

Step 1: All the technology enterprises are analyzed by a panel of decision-makers who gave their opinion 

using IVTSFNs to describe such enterprises in terms of the DM, DA, DNM, and DR. The provided 

information is given in Table 1 below. 

 

Table 1. shows a decision maker given by the decision maker. 

 

G1 G2 

B1 ([0.8,0.9],[0.6,0.7],[0.5,0.6]) ([0.81,0.91],[0.61,0.71],[0.51,0.61]) 

B2 ([0.7,0.8],[0.5 0.6],[0.6 0.7]) ([0.71,0.81],[0.51,0.61],[0.61 0.71]) 

B3 ([0.75,0.85],[0.4,0.5],[0.7,0.8]) ([0.76,0.86],[0.41,0.51],[0.71,0.81]) 

B4 ([0.7,0.8],[0.1,0.2],[0.6,0.7]) ([0.71,0.81],[0.11,0.21],[0.61,0.71]) 

B5 ([0.7,0.9],[0.2,0.5],[0.3,0.5]) ([0.71,0.91],[0.21,0.51],[0.31,0.51]) 

 

G3 G4 

B1 ([0.82,0.92],[0.62,0.72],[0.52,0.62]) ([0.83,0.93],[0.63,0.73],[0.53,0.63]) 

B2 ([0.72,0.82],[0.52,0.62],[0.62,0.72]) ([0.73,0.83],[0.53,0.63],[0.63 0.73]) 

B3 ([0.77,0.87],[0.42 0.52],[0.72,0.82]) ([0.78,0.88],[0.43,0.53],[0.73,0.83]) 

B4 ([0.72,0.82],[0.12,0.22],[0.62,0.72]) ([0.73,0.83],[0.13,0.23],[0.63 0.73]) 

B5 ([0.72,0.92],[0.22,0.52],[0.32,0.52]) ([0.73,0.93],[0.23,0.53],[0.33,0.53]) 

Step 2: The decision matrix given in Table 1 has all attributes of benefit type and does not need 

normalization, so we omit the step of normalization defined in the algorithm. In other words, after 

normalization, we get the decision matrix in Table 2 which is the same as given in Table 1. 

 

Table 2. shows a transformation of a decision matrix into a normalization matrix. 

 

G1 G2 

B1 ([0.8,0.9],[0.6,0.7],[0.5,0.6]) ([0.81,0.91],[0.61,0.71],[0.51,0.61]) 

B2 ([0.7,0.8],[0.5 0.6],[0.6 0.7]) ([0.71,0.81],[0.51,0.61],[0.61 0.71]) 

B3 ([0.75,0.85],[0.4,0.5],[0.7,0.8]) ([0.76,0.86],[0.41,0.51],[0.71,0.81]) 

B4 ([0.7,0.8],[0.1,0.2],[0.6,0.7]) ([0.71,0.81],[0.11,0.21],[0.61,0.71] 

B5 ([0.7,0.9],[0.2,0.5],[0.3,0.5])  ([0.71,0.91],[0.21,0.51],[0.31,0.51]) 

 

G3 G4 

B1 ([0.82,0.92],[0.62,0.72],[0.52,0.62]) ([0.83,0.93],[0.63,0.73],[0.53,0.63]) 

B2 ([0.72,0.82],[0.52,0.62],[0.62,0.72]) ([0.73,0.83],[0.53,0.63],[0.63 0.73]) 

B3 ([0.77,0.87],[0.42 0.52],[0.72,0.82]) ([0.78,0.88],[0.43,0.53],[0.73,0.83]) 

B4 ([0.72,0.82],[0.12,0.22],[0.62,0.72]) ([0.73,0.83],[0.13,0.23],[0.63 0.73]) 

B5 ([0.72,0.92],[0.22,0.52],[0.32,0.52]) ([0.73,0.93],[0.23,0.53],[0.33,0.53]) 

Step 3: By using the IVTSFMSM, IVTSFWMSM, IVTSFDMSM, and IVTSFWDMSM operators, we 

aggregate the normalized decision matrix as follows in Table 3. 
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Table 3. shows the consequences of our proposed AOs by using the information in table 2. 

 

Step 4: By using Definition 2 of the score function, we examine the score values of the aggregated values in 

Table 4 as follows: 

 

Table 2. contains score values of the proposed methodology by using the information in table 2. 

 

B1 B2 B3 B4 B5 

IVTSFMSM -0.342 -0.233 -0.276 -0.098 -0.0126 

IVTSFWMSM -0.215 -0.149 -0.175 -0.054 -0.03 

IVTSFDMSM 0.8287 0.7813 0.7551 0.9281 0.9841 

IVTSFWDMSM 0.8903 0.8387 0.8305 0.9419 0.9667 

Step 5: All the score values are analyzed and the ranking of the optimum technology enterprises is given 

in Table 4 below. 

 

Table 5. shows the ranking and ordering of the score values. 

Methods Ranking Values 

IVTSFMSM D5≥D4≥D1≥D2≥D3 

IVTSFWMSM D5≥D4≥D2≥D3≥D1 

IVTSFDMSM D5≥D4≥D1≥D2≥D3 

IVTSFWDMSM D5≥D4≥D1≥D2≥D3 

From the above discussions, we obtain the best alternative is D_5  by using the IVTSFMSM, 

IVTSFWMSM and IVTSFDMSM and IVTSFWDMSM operators. We also show the consequences of the 

score values in the following graphical representation of figure 1. 

Method B1 B2 B3 

IVTSFMSM 

([0.9082,0.9437], 

[0.979,0.9855], 

[0.971,0.979]) 

([0.8756,0.9052], 

[0.971,0.979], 

[0.979,0.9855]) 

([0.918,0.9232], 

[0.9625,0.9715], 

[0.9854,0.9914]) 

IVTSFWMSM 

([0.88,0.9102], 

[0.9741,0.9799], 

[0.9667,0.9735]) 

([0.892,0.8738], 

[0.9667,0.9735], 

[0.9741,0.9799]) 

([0.8646,0.8905], 

[0.9577,0.9661], 

[0.9804,0.9858]) 

SFDMSM 

([0.9912,0.9972], 

[0.8418,0.8718], 

[0.801,0.8378]) 

([0.9854,0.9914], 

[0.8041,0.8378], 

[0.8418,0.8718]) 

([0.9883,0.9943], 

[0.7604,0.8001], 

[0.8756,0.9052]) 

IVTSFWDMSM 

([0.986,0.9922], 

[0.8167,0.8425], 

[0.7802,0.81]) 

([0.9804,0.9858], 

[0.8041,0.81], 

[0.8167,0.8425]) 

([0.9833,0.9889], 

[0.7399,0.7738], 

[0.8492,0.8738]) 

Method D1 D2 

 

IVTSFMSM 

([0.8756,0.9052], 

[0.9085,0.9351], 

[0.979,0.9855]) 

([0.8756,0.9437], 

[0.9351,0.9715], 

[0.9511,0.9715]) 

 

IVTSFWMSM 

([0.8492,0.8738], 

[0.904,0.9299], 

[0.9741,0.9799]) 

([0.8492,0.9102], 

[0.9305.0.9661], 

[0.9463,0.9661]) 

 

IVTSFDMSM 

([0.9854,0.9914], 

[0.5377,0.6363], 

[0.8418,0.8718]) 

([0.9854,0.9972], 

[0.6394,0.8001], 

[0.7077,0.8001]) 

 

IVTSFWDMSM 

([0.9804,0.9858], 

[0.5218,0.6153], 

[0.8167,0.8425]) 

([0.9804,0.9922], 

[0.6205 0.7738], 

[0.6867,0.7738]) 
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Figure 1. shows the score values of our proposed techniques. 

7. Comparative Analysis 

To evaluate the validity and competitiveness of the current proposed work based on IVTSFSs, we used 

some existing operators (Garg et al., 2017), (Zhang et al., 2014), (Liu et al., 2017), based on IVTSFSs to 

compare with proposed AOs.  Improved interactive averaging AOs by using IVTSFNs by Garg et al. (2017), 

Einstein hybrid AOs of IVTSFNs by Zhang et al. (2014), and improved Hamacher AOs of IVTSFNs by Liu 

et al. (2017). The consequences of AOs shown in the following table 6 by utilizing the information of the 

decision matrix shown in table 1. 

 
Table 3. shows the consequences of a comparative study with existing AOs. 

Method  Score Values      Ranking Values 

 

Ṥ(D1 ) Ṥ(D2 ) Ṥ(D3 ) Ṥ(D4 ) Ṥ(D5 ) 

 Garg et al. (2017) -0.098 -0.278 -0.246 -0.058 0.0283 D5≥D4≥D1≥D3≥D2 

 

-0.07 -0.177 -0.139 -0.047 -0.036 D5≥D4≥D1≥D3≥D2 

 

0.7652 0.7265 0.6814 0.7856 0.87 D5≥D4≥D1≥D2≥D3 

 

0.8565 0.7837 0.7328 0.8896 0.962 D5≥D4≥D1≥D2≥D3 

Zhang et al. (2014) -0.069 -0.158 -0.122 -0.006 0.0089 D5≥D4≥D1≥D3≥D2 

 

-0.106  -0.28 -0.25 -0.076 -0.052 D5≥D4≥D1≥D3≥D2 

 

0.7437  0.6748 0.6646 0.8758 0.9526 D5≥D4≥D1≥D2≥D3 

 

0.8676 0.843 0.8178 0.9171 0.9428 D5≥D4≥D1≥D2≥D3 

Liu et al. (2017) -0.055 -0.150 -0.110 -0.0040 0.0355 D5≥D4≥D1≥D3≥D2 

 

-0.098 -0.166 -0.134 -0.017 -0.006 D5≥D4≥D1≥D3≥D2 

 

0.8634 0.7461 0.734 0.8287 0.9633 D5≥D4≥D1≥D2≥D3 

 

0.8796 0.7826 0.6795 0.93444 0.9876 D5≥D4≥D1≥D2≥D3 

Proposed Operators -0.34 -0.233 -0.276 -0.098 -0.0126 D5≥D4≥D1≥D3≥D2 

 

-0.215 -0.149 -0.175 -0.054 -0.03 D5≥D4≥D1≥D3≥D2 

 

0.8287 0.7813 0.7551 0.9281 0.9841 D5≥D4≥D1≥D2≥D3 

 

0.8903 0.8387 0.8305 0.9419 0.9667 D5≥D4≥D1≥D2≥D3 

We observed from the consequences of existing AOs that 𝔇5 is the best alternative. The geometrical 

representation is shown in Figure 2 by using the results of table 6. 
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Figure 1. shows the results of the comparative study. 

8. Conclusion 

In this paper, we examined the conception of MSM operators in the environment of IVTSFSs as only the 

IVTSF environment provides flexibility in the assigning of the degrees of memberships and reduces 

information loss. Our main achievements are as follows: 

1. We developed IVTSFMSM operators and IVTSFDMSM operators and investigated their 

characteristics.  

2. To find the validity of our proposed AOs, we discuss some numerical examples. 

3. The limitation of the previous work is observed and pointed out given some remarks where the 

generalization of the current work is proved. 

4. The newly develop operators are utilized in the MADM problem to show their effectiveness and 

versatility. 

5. The results obtained using IVTSFMSM operators are compared with the previous study. 

We conclude two main advantages of our proposed work which are discussed as follows: 

1. The use of fours degrees i.e., the DM, DA, DNM, and DR greatly reduces information loss 

which is very often in the frames of IVIFSs, IVPyFSs, and IVQROFSs. 

2. The use of variable parameters gives us flexible boundaries in assigning the DM, DNM, DA, etc. 

unlike IVPFSs, IVIFSs, IVSFSs, and IVPyFSs. 

3. In the future, we work on complex T Spherical fuzzy and interval-valued complex T spherical 

fuzzy.  

4. In the coming future, we generalized our proposed work in the environment of complex IVTSF 

graphs (Hussain et al., 2021), (Ullah et al., 2022). Furthermore, we also enlarged our proposed 

work in the environment of PyF by using the Aczel Alsina operations (Hussain et al., 2022).  
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